ﻻ يوجد ملخص باللغة العربية
The field-effect-induced modulation of transport properties of 2-dimensional electron gases residing at the LaAlO$_3$/SrTiO$_3$ and LaGaO$_3$/SrTiO$_3$ interfaces has been investigated in a back-gate configuration. Both samples with crystalline and with amorphous overlayers have been considered. We show that the naive standard scenario, in which the back electrode and the 2-dimensional electron gas are simply modeled as capacitor plates, dramatically fails in describing the observed phenomenology. Anomalies appearing after the first low-temperature application of a positive gate bias, and causing a non-volatile perturbation of sample properties, are observed in all our samples. Such anomalies are shown to drive low-carrier density samples to a persistent insulating state. Recovery of the pristine metallic state can be either obtained by a long room-temperature field annealing, or, instantaneously, by a relatively modest dose of visible-range photons. Illumination causes a sudden collapse of the electron system back to the metallic ground state, with a resistivity drop exceeding four orders of magnitude. The data are discussed and interpreted on the base of the analogy with floating-gate MOSFET devices, which sheds a new light on the effects of back-gating on oxide-based 2-dimensional electron gases. A more formal approach, allowing for a semi-quantitative estimate of the relevant surface carrier densities for different samples and under different back-gate voltages, is proposed in the Appendix.
We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance
Diluted oxide interface of LaAl1-xMnxO/SrTiO3 (LAMO/STO) provides a new way of tuning the ground states of the interface between the two band insulators of LAO and STO from metallic/superconducting to highly insulating. Increasing the Mn doping level
Results from transport measurements in individual $W_{x}V_{1-x}O_{2}$ nanowires with varying extents of $W$ doping are presented. An abrupt thermally driven metal-insulator transition (MIT) is observed in these wires and the transition temperature de
Strain engineering is a powerful technology which exploits stationary external or internal stress of specific spatial distribution for controlling the fundamental properties of condensed materials and nanostructures. This advanced technique modulates