ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry analysis of transport properties in helical superconductor junctions

51   0   0.0 ( 0 )
 نشر من قبل Qiang Cheng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study discrete symmetries satisfied by helical $p$-wave superconductors with d-vectors $k_{x}hat{x}pm k_{y}hat{y}$ or $k_{y}hat{x}pm k_{x}hat{y}$ and transformations brought by the symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with transport properties in heterojunctions including helical superconductor. Especially, the partial symmetries of the Hamiltonian under the spin-rotation and gauge-rotation operations are responsible for novel invariances of the conductance in tunnel junctions and new selection rules of the lowest current and peculiar phase diagrams in Josephson junctions which are reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed which are consistent with the results from Hamiltonian.

قيم البحث

اقرأ أيضاً

Inspired by a recent experimental observation of the zero-bias tunneling conductance in superconductor-semiconductor nanowire devices, we consider here transport properties of the junctions consisting of a nanowire (Luttinger liquid) coupled to a top ological superconductor characterized by the presence of Majorana zero-energy end states. The presence of the Majorana modes leads to a quantization of the zero-bias tunneling conductance at zero temperature. In order to understand this phenomenon, we have developed a framework, based on real-time Keldysh technique, which allows one to compute tunneling conductance at finite temperature and voltage in a realistic experimental setup. Our approach allows one to understand this transport phenomenon from a more general perspective by including the effect of interactions in the nanowire, which sometimes results in a drastic departure from the non-interacting predictions. Thus, our results provide a key insight for the tunneling experiments aiming at detecting Majorana particles in one-dimensional nanowire devices.
390 - Xin-Zhong Yan , Hongwei Zhao , 2000
On the basis of the Keldysh method of non-equilibrium systems, we develop a theory of electron tunneling in normal-metal/superconductor junctions. By using the tunneling Hamiltonian model (being appropriate for the tight-binding systems), the tunneli ng current can be exactly obtained in terms of the equilibrium Green functions of the normal metal and the superconductor. We calculate the conductance of various junctions. The discrepancy between the present treatment and the well-known scheme by Blonder, Tinkham, and Klapwijk is found for some junctions of low interfacial potential barrier.
We investigate the charge and spin transport in half-metallic ferromagnet ($F$) and superconductor ($S$) nanojunctions. We utilize a self-consistent microscopic method that can accommodate the broad range of energy scales present, and ensures proximi ty effects that account for the interactions at the interfaces are accurately determined. Two experimentally relevant half-metallic junction types are considered: The first is a $F_1 F_2 S$ structure, where a half-metallic ferromagnet $F_1$ adjoins a weaker conventional ferromagnet $F_2$. The current is injected through the $F_1$ layer by means of an applied bias voltage. The second configuration involves a $S F_1 F_2 F_3 S$ Josephson junction whereby a phase difference $Deltavarphi$ between the two superconducting electrodes generates the supercurrent flow. In this case, the central half-metallic $F_2$ layer is surrounded by two weak ferromagnets $F_1$ and $F_3$. By placing a ferromagnet with a weak exchange field adjacent to an $S$ layer, we are able to optimize the conversion process in which opposite-spin triplet pairs are converted into equal-spin triplet pairs that propagate deep into the half-metallic regions in both junction types. For the tunnel junctions, we study the bias-induced local magnetization, spin currents, and spin transfer torques for various orientations of the relative magnetization angle $theta$ in the $F$ layers. We find that the bias-induced equal-spin triplet pairs are maximized in the half-metal for $thetaapprox90^circ$ and as part of the conversion process, are anticorrelated with the opposite-spin pairs. We show that the charge current density is maximized, corresponding to the occurrence of a large amplitude of equal-spin triplet pairs, when the exchange interaction of the weak ferromagnet is about $0.1E_F.$
We study low temperature electron transport in p-wave superconductor-insulator-normal metal junctions. In diffusive metals the p-wave component of the order parameter decays exponentially at distances larger than the mean free path $l$. At the superc onductor-normal metal boundary, due to spin-orbit interaction, there is a triplet to singlet conversion of the superconducting order parameter. The singlet component survives at distances much larger than $l$ from the boundary. It is this component that controls the low temperature resistance of the junctions. As a result, the resistance of the system strongly depends on the angle between the insulating boundary and the ${bf d}$-vector characterizing the spin structure of the triplet superconducting order parameter. We also analyze the spatial dependence of the electric potential in the presence of the current, and show that the electric field is suppressed in the insulating boundary as well as in the normal metal at distances of order of the coherence length away from the boundary. This is very different from the case of the normal metal-insulator-normal metal junctions, where the voltage drop takes place predominantly at the insulator.
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa th due to elastic scattering much smaller than the sample size and discuss disordered transport behaviors in the presence of different numbers of chiral edge modes, as well as non-chiral metallic modes. Our numerical results demonstrate that the presence of multiple chiral edge modes or non-chiral metallic modes will lead to a strong Andreev conversion, giving rise to half-electron half-hole transmission through the junction structure, in sharp contrast to the suppression of Andreev conversion in the single chiral edge mode case. Our results suggest the importance of additional transport modes in the quantum anomalous Hall insulator-superconductor junction and will guide the future transport measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا