ﻻ يوجد ملخص باللغة العربية
The recent fast growth of a population of millisecond pulsars with precisely measured mass provides an excellent opportunity to characterize these compact stars at an unprecedented level. This is because the stellar parameter values can be accurately computed for known mass and spin rate and an assumed equation of state (EoS) model. For each of the 16 such pulsars and for a set of EoS models from nucleonic, hyperonic, strange quark matter and hybrid classes, we numerically compute fast spinning stable stellar parameter values considering the full effect of general relativity. This first detailed catalogue of the computed parameter values of observed millisecond pulsars provides a testbed to probe the physics of compact stars, including their formation, evolution and EoS. We estimate uncertainties on these computed values from the uncertainty of the measured mass, which could be useful to quantitatively constrain EoS models. We note that the largest value of the central density $rho_{rm c}$ in our catalogue is $sim 5.8$ times the nuclear saturation density $rho_{rm sat}$, which is much less than the expected maximum value $13 rho_{rm sat}$. We argue that the $rho_{rm c}$-values of at most a small fraction of compact stars could be much larger than $5.8 rho_{rm sat}$. Besides, we find that the constraints on EoS models from accurate radius measurements could be significantly biased for some of our pulsars, if stellar $spinning$ configurations are not used to compute the theoretical radius values.
We describe the consistency testing of a new code for gravitational wave signal parameter estimation in known pulsar searches. The code uses an implementation of nested sampling to explore the likelihood volume. Using fake signals and simulated noise
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter, in particul
We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are a
Neutron stars spin down over time due to a number of energy-loss processes. We provide tantalizing population-based evidence that millisecond pulsars (MSPs) have a minimum ellipticity of $epsilonapprox10^{-9}$ around their spin axis and that, consequ
We present ULTRACAM multiband optical photometry of two transitional millisecond pulsars, PSR J1023+0038 and PSR J1227$-$4853, taken while both were in their radio pulsar states. The light curves show significant asymmetry about the flux maxima in al