ﻻ يوجد ملخص باللغة العربية
The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was $(1.143pm0.007)cdot 10^{-7}$ Vm/W and $(1.101pm0.015)cdot 10^{-7}$ Vm/W with the heat flux method and $(2.313pm0.017)cdot 10^{-7}$ V/K and $(4.956pm0.005)cdot 10^{-7}$ V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.
Using a simplified microscopic model of coupled spin and lattice excitations in a ferromagnetic insulator we evaluate the magnetic-field dependence of the spin Seebeck effect at low temperatures. The model includes Heisenberg exchange coupling, a har
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi2Te3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectri
We develop a Boltzmann transport theory of coupled magnon-phonon transport in ferromagnetic insulators. The explicit treatment of the magnon-phonon coupling within the Boltzmann approach allows us to calculate the low-temperature magnetic-field depen
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total
Since its experimental discovery, many phenomenological theories successfully reproduced the rapid rise from $p$ to $1+p$ found in the Hall number $n_H$ at the critical doping $p^*$ of the pseudogap in superconducting cuprates. Further comparison wit