ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling long-range wavelength distortions in quasar absorption echelle spectra

60   0   0.0 ( 0 )
 نشر من قبل Vincent Dumont
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectra observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) on the European Southern Observatorys VLT exhibit long-range wavelength distortions. These distortions impose a systematic error on high-precision measurements of the fine-structure constant, $alpha$, derived from intervening quasar absorption systems. If the distortion is modelled using a model that is too simplistic, the resulting bias in $Deltaalpha/alpha$ away from the true value can be larger than the statistical uncertainty on the $alpha$ measurement. If the effect is ignored altogether, the same is true. If the effect is modelled properly, accounting for the way in which final spectra are generally formed from the co-addition of exposures made at several different instrumental settings, the effect can be accurately removed and the correct $Deltaalpha/alpha$ recovered.



قيم البحث

اقرأ أيضاً

We present a census of z(abs) < 2, intrinsic (those showing partial coverage) and associated [z(abs) ~ z(em)] quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. (2007) survey of 2 < z(em) < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Ly alpha is small compared to N V 1238) presented in that work, but find no convincing cases of strong C IV intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of strong O VI systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is a 3-sigma excess in the number of absorbers near the quasar redshift (|Delta v| <= 5000 km/s) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disk of the quasar.
We present a two-epoch Sloan Digital Sky Survey and Gemini/GMOS+William Herschel Telescope/ISIS variability study of 50 broad absorption line quasars of redshift range 1.9 < z < 4.2, containing 38 Si IV and 59 C IV BALs and spanning rest-frame time i ntervals of approximately 10 months to 3.7 years. We find that 35/50 quasars exhibit one or more variable BALs, with 58% of Si IV and 46% of C IV BALs showing variability across the entire sample. On average, Si IV BALs show larger fractional change in BAL pseudo equivalent width than C IV BALs, as referenced to an unabsorbed continuum+emission-line spectrum constructed using non-negative matrix factorisation. No correlation is found between BAL variability and quasar luminosity, suggesting that ionizing continuum changes do not play a significant role in BAL variability (assuming the gas is in photoionization equilibrium with the ionizing continuum). A subset of 14 quasars have one variable BAL from each of Si IV and C IV with significant overlap in velocity space and for which variations are in the same sense (strengthening or weakening) and which appear to be correlated (98% confidence). We find examples of both appearing and disappearing BALs in weaker/shallower lines with disappearance rates of 2.3% for C IV and 5.3% for Si IV, suggesting average lifetimes of 142 and 43 years respectively. We identify 5 objects in which the BAL is coincident with the broad emission-line, but appears to cover only the continuum source. Assuming a clumpy inhomogeneous absorber model and a typical size for the continuum source, we infer a maximum cloud radius of 10^13 to 10^14 cm, assuming Eddington limited accretion.
141 - Yong-Seon Song 2018
The observed power spectrum in redshift space appears distorted due to the peculiar motion of galaxies, known as redshift-space distortions (RSD). While all the effects in RSD are accounted for by the simple mapping formula from real to redshift spac es, accurately modeling redshift-space power spectrum is rather difficult due to the non-perturbative properties of the mapping. Still, however, a perturbative treatment may be applied to the power spectrum at large-scales, and on top of a careful modeling of the Finger-of-God effect caused by the small-scale random motion, the redshift-space power spectrum can be expressed as a series of expansion which contains the higher-order correlations of density and velocity fields. In our previous work [JCAP 8 (Aug., 2016) 050], we provide a perturbation-theory inspired model for power spectrum in which the higher-order correlations are evaluated directly from the cosmological $N$-body simulations. Adopting a simple Gaussian ansatz for Finger-of-God effect, the model is shown to quantitatively describe the simulation results. Here, we further push this approach, and present an accurate power spectrum template which can be used to estimate the growth of structure as a key to probe gravity on cosmological scales. Based on the simulations, we first calibrate the uncertainties and systematics in the pertrubation theory calculation in a fiducial cosmological model. Then, using the scaling relations, the calibrated power spectrum template is applied to a different cosmological model. We demonstrate that with our new template, the best-fitted growth functions are shown to reproduce the fiducial values in a good accuracy of 1 % at $k<0.18 hompc$ for cosmologies with different Hubble parameters.
We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 years (1-3.5 years in the quasar rest-frame). We present the observational data and th e conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems nor in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable broad absorption lines. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density $sim$ 10$^3$-10$^5$ cm$^{-3}$ and upper limits on the distance of the absorbers from the central engine of order a few kpc. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. The variability of BALs can help us understand the structure, evolution, and basic physical properties of the outflows. Here we report on our first results from an ongoing BAL monitoring campaign of a sample of 24 luminous quasars at redshifts 1.2<z<2.9, focusing on C IV 1549 BAL variability in two different time intervals: 4 to 9 months (short-term) and 3.8 to 7.7 years (long-term) in the quasar rest-frame. We find that 39% (7/18) of the quasars varied in the short-term, whereas 65% (15/23) varied in the long-term, with a larger typical change in strength in the long-term data. The variability occurs typically in only portions of the BAL troughs. The components at higher outflow velocities are more likely to vary than those at lower velocities, and weaker BALs are more likely to vary than stronger BALs. The fractional change in BAL strength correlates inversely with the strength of the BAL feature, but does not correlate with the outflow velocity. Both the short-term and long-term data indicate the same trends. The observed behavior is most readily understood as a result of the movement of clouds across the continuum source. If the crossing speeds do not exceed the local Keplerian velocity, then the observed short-term variations imply that the absorbers are <6 pc from the central quasar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا