ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing

67   0   0.0 ( 0 )
 نشر من قبل Martin Lanzend\\\"orfer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide numerical simulations of an incompressible pressure-thickening and shear-thinning lubricant flowing in a plane slider bearing. We study the influence of several parameters, namely the ratio of the characteristic lengths $varepsilon>0$ (with $varepsilonsearrow0$ representing the Reynolds lubrication approximation); the coefficient of the exponential pressure--viscosity relation $alpha^*geq0$; the parameter $G^*geq0$ related to the Carreau--Yasuda shear-thinning model and the modified Reynolds number $mathrm{Re}_varepsilongeq0$. The finite element approximations to the steady isothermal flows are computed without resorting to the lubrication approximation. We obtain the numerical solutions as long as the variation of the viscous stress $mathbf{S}=2eta(p,mathrm{tr}mathbf{D}^2)mathbf{D}$ with the pressure is limited, say $|partialmathbf{S}/partial p|leq1$. We show conclusively that the existing practice of avoiding the numerical difficulties by cutting the viscosity off for large pressures leads to results that depend sorely on the artificial cut-off parameter. We observe that the piezoviscous rheology generates pressure differences across the fluid film.



قيم البحث

اقرأ أيضاً

Many parts of biological organisms are comprised of deformable porous media. The biological media is both pliable enough to deform in response to an outside force and can deform by itself using the work of an embedded muscle. For example, the recent work (Ludeman et al., 2014) has demonstrated interesting sneezing dynamics of a freshwater sponge, when the sponge contracts and expands to clear itself from surrounding polluted water. We derive the equations of motion for the dynamics of such an active porous media (i.e., a deformable porous media that is capable of applying a force to itself with internal muscles), filled with an incompressible fluid. These equations of motion extend the earlier derived equation for a passive porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint of incompressibility. We then proceed to extend this theory by computing the case when both the active porous media and the fluid are incompressible, with the porous media still being deformable, which is often the case for biological applications. For the particular case of a uniform initial state, we rewrite the equations of motion in terms of two coupled telegraph-like equations for the material (Lagrangian) particles expressed in the Eulerian frame of reference, particularly suitable for numerical simulations, formulated for both the compressible media/incompressible fluid case and the doubly incompressible case. We derive interesting conservation laws for the motion, perform numerical simulations in both cases and show the possibility of self-propulsion of a biological organism due to particular running wave-like application of the muscle stress.
We study the Richtmyer--Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme adopts a finite volume Weighted Essentially Non-Oscillatory (WENO) reconstruction to increase accuracy in space, a local space-time discontinuous Galerkin predictor method to obtain high order of accuracy in time and a high order one-step time update scheme together with a cell-by-cell space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number $A>0$), and for the case in which a heavy fluid penetrates into a lower density one (Atwood number $A<0$). We find that, for large Lorentz factors gamma_s of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of gamma_s ~ [1.2,2]. Moreover, we have also revealed a genuine relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In this case, the RM instability is strongly affected, typically resulting in less efficient mixing of the fluid.
Emergence of singularity of vorticity at a single point, not related to any symmetry of the initial distribution, has been demonstrated numerically for the first time. Behavior of the maximum of vorticity near the point of collapse closely follows th e dependence 1/(t0-t), where t0 is the time of collapse. This agrees with the interpretation of collapse in an ideal incompressible fluid as of the process of vortex lines breaking.
Recently, detailed experiments on visco-elastic channel flow have provided convincing evidence for a nonlinear instability scenario which we had argued for based on calculations for visco-elastic Couette flow. Motivated by these experiments we extend the previous calculations to the case of visco-elastic Poiseuille flow, using the Oldroyd-B constitutive model. Our results confirm that the subcritical instability scenario is similar for both types of flow, and that the nonlinear transition occurs for Weissenberg numbers somewhat larger than one. We provide detailed results for the convergence of our expansion and for the spatial structure of the mode that drives the instability. This also gives insight into possible similarities with the mechanism of the transition to turbulence in Newtonian pipe flow.
A flowing pair of particles in inertial microfluidics gives important insights into understanding and controlling the collective dynamics of particles like cells or droplets in microfluidic devices. They are applied in medical cell analysis and engin eering. We study the dynamics of a pair of solid particles flowing through a rectangular microchannel using lattice Boltzmann simulations. We determine the inertial lift force profiles as a function of the two particle positions, their axial distance, and the Reynolds number. Generally, the profiles strongly differ between particles leading and lagging in flow and the lift forces are enhanced due to the presence of a second particle. At small axial distances, they are determined by viscous forces, while inertial forces dominate at large separations. Depending on the initial conditions, the two-particle lift forces in combination with the Poiseuille flow give rise to three types of unbound particle trajectories, called moving-apart, passing, and swapping, and one type of bound trajectories, where the particles perform damped oscillations. The damping rate scales with Reynolds number squared, since inertial forces are responsible for driving the particles to their steady-state positions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا