ﻻ يوجد ملخص باللغة العربية
The XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$ exhibits a rare case of $Z_6$ discrete symmetry breaking in its $psi_2$ magnetic ground state. Despite being well-studied theoretically, systems with high discrete symmetry breakings are uncommon in nature and, thus, Er$_2$Ti$_2$O$_7$ provides an experimental playground for the study of broken $Z_n$ symmetry, for $n>2$. A recent theoretical work examined the effect of a magnetic field on a pyrochlore lattice with broken $Z_6$ symmetry and applied it to Er$_2$Ti$_2$O$_7$. This study predicted multiple domain transitions depending on the crystallographic orientation of the magnetic field, inducing rich and controllable magnetothermodynamic behavior. In this work, we present neutron scattering measurements on Er$_2$Ti$_2$O$_7$ with a magnetic field applied along the [001] and [111] directions, and provide the first experimental observation of these exotic domain transitions. In a [001] field, we observe a $psi_2$ to $psi_3$ transition at a critical field of 0.18$pm$0.05T. We are thus able to extend the concept of the spin-flop transition, which has long been observed in Ising systems, to higher discrete $Z_n$ symmetries. In a [111] field, we observe a series of domain-based phase transitions for fields of 0.15$pm$0.03T and 0.40$pm$0.03T. We show that these field-induced transitions are consistent with the emergence of two-fold, three-fold and possibly six-fold Zeeman terms. Considering all the possible $psi_2$ and $psi_3$ domains, these Zeeman terms can be mapped onto an analog clock - exemplifying a literal clock anisotropy. Lastly, our quantitative analysis of the [001] domain transition in Er$_2$Ti$_2$O$_7$ is consistent with order-by-disorder as the dominant ground state selection mechanism.
We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic di
The XY-pyrochlore antiferromagnet ETO is studied by heat capacity measurements and electron spin resonance spectroscopy performed on single crystal samples. The magnetic phase diagrams are established for two directions of applied field, $Hparallel [
Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker st
The single ion physics of Ho$_2$Ti$_2$O$_7$ is well-understood to produce strong Ising anisotropy, which is an essential ingredient to its low-temperature spin ice state. We present inelastic neutron scattering measurements on Ho$_2$Ti$_2$O$_7$ that
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-depe