ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge Transport in C$_{60}$-based Single-Molecule Junctions with Graphene Electrodes

282   0   0.0 ( 0 )
 نشر من قبل Susanne Leitherer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate charge transport in C$_{60}$-based single-molecule junctions with graphene electrodes employing a combination of density functional theory (DFT) electronic structure calculations and Landauer transport theory. In particular, the dependence of the transport properties on the conformation of the molecular bridge and the type of termination of the graphene electrodes is investigated. Furthermore, electron pathways through the junctions are analyzed using the theory of local currents. The results reveal, in agreement with previous experiments, a pronounced dependence of the transport properties on the bias polarity, which is rationalized in terms of the electronic structure of the molecule. It is also shown that the edge states of zigzag-terminated graphene induce additional transport channels, which dominate transport at small voltages. The importance of the edge states for transport depends profoundly on the interface geometry of the junctions.



قيم البحث

اقرأ أيضاً

In this review we discuss spin and charge transport properties in graphene-based single-layer and few-layer spin-valve devices. We give an overview of challenges and recent advances in the field of device fabrication and discuss two of our fabricatio n methods in more detail which result in distinctly different device performances. In the first class of devices, Co/MgO electrodes are directly deposited onto graphene which results in rough MgO-to-Co interfaces and favor the formation of conducting pinholes throughout the MgO layer. We show that the contact resistance area product (R$_c$A) is a benchmark for spin transport properties as it scales with the measured spin lifetime in these devices indicating that contact-induced spin dephasing is the bottleneck for spin transport even in devices with large R$_c$A values. In a second class of devices, Co/MgO electrodes are first patterned onto a silicon substrate. Subsequently, a graphene-hBN heterostructure is directly transferred onto these prepatterned electrodes which provides improved interface properties. This is seen by a strong enhancement of both charge and spin transport properties yielding charge carrier mobilities exceeding 20000 cm$^2$/(Vs) and spin lifetimes up to 3.7 ns at room temperature. We discuss several shortcomings in the determination of both quantities which complicates the analysis of both extrinsic and intrinsic spin scattering mechanisms. Furthermore, we show that contacts can be the origin of a second charge neutrality point in gate dependent resistance measurements which is influenced by the quantum capacitance of the underlying graphene layer.
Spin-crossover (SCO) molecules are versatile magnetic switches with applications in molecular electronics and spintronics. Downscaling devices to the single-molecule level remains, however, a challenging task since the switching mechanism in bulk is mediated by cooperative intermolecular interactions. Here, we report on electron transport through individual Fe-SCO molecules coupled to few-layer graphene electrodes textit{via} $pi - pi$ stacking. We observe a distinct bistability in the conductance of the molecule and a careful comparison with density functional theory (DFT) calculations allows to associate the bistability with a SCO-induced orbital reconfiguration of the molecule. We find long spin-state lifetimes that are caused by the specific coordination of the magnetic core and the absence of intermolecular interactions according to our calculations. In contrast with bulk samples, the SCO transition is not triggered by temperature but induced by small perturbations in the molecule at any temperature. We propose plausible mechanisms that could trigger the SCO at the single-molecule level.
In the present work, we theoretically analyze the steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. Thermally induced charge current in the system is explored using a nonequilibrium Greens functions for malism. We study combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both magnitude and direction of the thermocurrent, and vibrational signatures may appear.
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotrop ic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and sign of TAMR are tunable by the bias voltage, suggesting a promising TAMR based spintronic molecule-device.
We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results sug gest that the encapsulated C$_{60}$ molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C$_{60}$ strongly modifies the electronic structure of a nanotube away from the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا