ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon thermal conduction in novel 2D materials

115   0   0.0 ( 0 )
 نشر من قبل Xiangfan Xu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, there have been increasing interests in phonon thermal transport in low dimensional materials, due to the crucial importance for dissipating and managing heat in micro and nano electronic devices. Significant progresses have been achieved for one-dimensional (1D) systems both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges in fabricating suspended samples suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges in phonon thermal transport measurements and provide comparison between existing experimental data. Special focus will be given to the effects of the size, dimensionality, anisotropy and mode contributions in the novel 2D systems including graphene, boron nitride, MoS2, black phosphorous, silicene etc.

قيم البحث

اقرأ أيضاً

Surface phonon-polaritons can carry energy on the surface of dielectric films and thus are expected to contribute to heat conduction. However, the contribution of surface phonon-polaritons (SPhPs) to thermal transport has not been experimentally demo nstrated yet. In this work, we experimentally measure the effective in-plane thermal conductivity of amorphous silicon nitride membrane and show that it can indeed be increased by SPhPs significantly when the membrane thickness scales down. In particular, by heating up a thin membrane (<100 nm) from 300 to 800 K, the thermal conductivity increases twice due to SPhPs contribution.
We investigated theoretically the phonon thermal conductivity of single layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-force field method. The three-phono n Umklapp processes were treated exactly using an accurate phonon dispersion and Brillouin zone, and accouting for all phonon relaxation channels allowed by the momentum and energy conservation laws. The uniqueness of graphene was reflected in the two-dimensional phonon density of states and restrictions on the phonon Umklapp scattering phase-space. The phonon scattering on defects and graphene edges has been also included in the model. The calculations were performed for the Gruneisen parameter, which was determined from the ab initio theory as a function of the phonon wave vector and polarization branch, and for a range of values from experiments. It was found that the near room-temperature thermal conductivity of single layer graphene, calculated with a realistic Gruneisen parameter, is in the range ~ 2000 - 5000 W/mK depending on the defect concentration and roughness of the edges. Owing to the long phonon mean free path the graphene edges produce strong effect on thermal conductivity even at room temperature. The obtained results are in good agreement with the recent measurements of the thermal conductivity of suspended graphene.
121 - Wen-Yu Shan 2020
We systematically study the impact of various electron-acoustic-phonon coupling mechanisms on valley physics in two-dimensional materials. In the static strain limit, we find that Dirac cone tilt and deformation potential have analogous valley Hall r esponse since they fall into the same universality class of pseudospin structure. However, such argument fails for the coupling mechanism with position-dependent Fermi velocity. For the isotropic case, a significant valley Hall effect occurs near charge neutrality similar to the bond-length change, whereas for the anisotropic case, the geometric valley transport is suppressed, akin to the deformation potential. Gap opening mechanism by nonuniform strain is found to totally inhibit the valley Hall transport, even if the dynamics of strains are introduced. By varying gate voltage, a tunable phonon-assisted valley Hall response can be realized, which paves a way toward rich phenomena and new functionalities of valley acoustoelectronics.
183 - Chuang Zhang , Zhaoli Guo 2021
Previous studies have predicted the failure of Fouriers law of thermal conduction due to the existence of wave like propagation of heat with finite propagation speed. This non-Fourier thermal transport phenomenon can appear in both the hydrodynamic a nd (quasi) ballistic regimes. Hence, it is not easy to clearly distinguish these two non-Fourier regimes only by this phenomenon. In this work, the transient heat propagation in homogeneous thermal system is studied based on the phonon Boltzmann transport equation (BTE) under the Callaway model. Given a quasi-one or quasi-two (three) dimensional simulation with homogeneous environment temperature, at initial moment, a heat source is added suddenly at the center with high temperature, then the heat propagates from the center to the outer. Numerical results show that in quasi-two (three) dimensional simulations, the transient temperature will be lower than the lowest value of initial temperature in the hydrodynamic regime within a certain range of time and space. This phenomenon appears only when the normal scattering dominates heat conduction. Besides, it disappears in quasi-one dimensional simulations. Similar phenomenon is also observed in thermal systems with time varying heat source. This novel transient heat propagation phenomenon of hydrodynamic phonon transport distinguishes it well from (quasi) ballistic phonon transport.
In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride (hBN), low-loss infrared-active phonon-polaritons exhibit hyperbolic behavior for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides (TMDs), reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near field optical microscopy (SNOM). Here, we review recent progress in state-of-the-art experiments, survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures-of-merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا