ترغب بنشر مسار تعليمي؟ اضغط هنا

Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

96   0   0.0 ( 0 )
 نشر من قبل Aage Sandqvist
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The Odin satellite is now into its sixteenth year of operation, much surpassing its design life of two years. One of the sources which Odin has observed in great detail is the Sgr A Complex in the centre of the Milky Way. Aims. To study the presence of NH3 in the Galactic Centre and spiral arms. Methods. Recently, Odin has made complementary observations of the 572 GHz NH3 line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results. Significant NH3 emission has been observed in both the +50 km/s Cloud and the CND. Clear NH3 absorption has also been detected in many of the spiral arm features along the line of sight from the Sun to the core of our Galaxy. Conclusions. The very large velocity width (80 km/s) of the NH3 emission associated with the shock region in the southwestern part of the CND may suggest a formation/desorption scenario similar to that of gas-phase H2O in shocks/outflows.

قيم البحث

اقرأ أيضاً

97 - Aa. Sandqvist 2015
To date O2 has definitely been detected in only two sources, namely rho Oph A and Orion, reflecting the extremely low abundance of O2 in the interstellar medium. One of the sources in the HOP program is the +50 km/s Cloud in the Sgr A Complex in the centre of the Milky Way. The Herschel HIFI is used to search for the 487 and 774 GHz emission lines of O2. No O2 emission is detected towards the Sgr A +50 km/s Cloud, but a number of strong emission lines of methanol (CH3OH) and absorption lines of chloronium (H2Cl+) are observed. A 3 sigma upper limit for the fractional abundance ratio of (O2)/(H2) in the Sgr A +50 km/s Cloud is found to be X(O2) less than 5 x 10(-8). However, since we can find no other realistic molecular candidate than O2 itself, we very tentatively suggest that two weak absorption lines at 487.261 and 487.302 GHz may be caused by the 487 GHz line of O2 in two foreground spiral arm clouds. By considering that the absorption may only be apparent, the estimated upper limit to the O2 abundance of less than (10-20) x 10(-6) in these foreground clouds is very high. This abundance limit was determined also using Odin non-detection limits. If the absorption is due to a differential Herschel OFF-ON emission, the O2 fractional abundance may be of the order of (5-10) x 10(-6). With the assumption of pure absorption by foreground clouds, the unreasonably high abundance of (1.4-2.8) x 10(-4) was obtained. The rotation temperatures for CH3OH-A and CH3OH-E lines in the +50 km/s Cloud are found to be 64 and 79 K, respectively, and the fractional abundance of CH3OH is approximately 5 x 10(-7).
We performed a search of star-forming sites influenced by external factors, such as SNRs, HII regions, and cloud-cloud collisions, to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO $v=0, J=2-1$, H$^{13}$CO$^+ J=1-0$, and CS $J=1-0$ emission lines obtained by the Nobeyama 45-m telescope. We found a half-shell like feature (HSF) with a high integrated line intensity ratio of $ int T_{ mathrm B}$(SiO $v=0, J=2-1$)$dv$/$ int T_{ mathrm B}$(H$^{13}$CO$^+ J=1-0$)$dv sim6-8$ in the 50 km s$^{-1}$ molecular cloud, which is a most conspicuous molecular cloud in the region and harbors an active star-forming site seen as several compact HII regions. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF is also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature is originated by a cloud-cloud collision (CCC). We analyzed the CS $J=1-0$ emission line data obtained by Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to $ sim2500M_ odot$ although the CMF of the non-CCC region reaches the upper limit of $ sim1500M_ odot$. Most massive molecular cores with $M_{ mathrm{gas}}>750 M_{ odot}$ are located only around the ridge of the HSF and adjoin the compact HII region. These may be a sign of massive star formation induced by CCC in the Galactic center region.
The Galactic Center 50 km s$^{-1}$ Molecular Cloud (50MC) is the most remarkable molecular cloud in the Sagittarius A region. This cloud is a candidate for the massive star formation induced by cloud-cloud collision (CCC) with a collision velocity of $sim30rm~km~s^{-1}$ that is estimated from the velocity dispersion. We observed the whole of the 50MC with a high angular resolution ($sim2.0times1.4$) in ALMA cycle 1 in the H$^{13}$CO$^+~J=1-0$ and ${rm C^{34}S}~J=2-1$ emission lines. We identified 241 and 129 bound cores with a virial parameter of less than 2, which are thought to be gravitationally bound, in the H$^{13}$CO$^+$ and ${rm C^{34}S}$ maps using the clumpfind algorithm, respectively. In the CCC region, the bound ${rm H^{13}CO^+}$ and ${rm C^{34}S}$ cores are 119 and 82, whose masses are $68~%$ and $76~%$ of those in the whole 50MC, respectively. The distribution of the core number and column densities in the CCC are biased to larger densities than those in the non-CCC region. The distributions indicate that the CCC compresses the molecular gas and increases the number of the dense bound cores. Additionally, the massive bound cores with masses of $>3000~M_{odot}$ exist only in the CCC region, although the slope of the core mass function (CMF) in the CCC region is not different from that in the non-CCC region. We conclude that the compression by the CCC efficiently formed massive bound cores even if the slope of the CMF is not changed so much by the CCC.
We present the statistical properties of molecular clumps in the Galactic center 50 km s$^{-1}$ molecular cloud (GCM-0.02-0.07) based on observations of the CS $J=1-0$ emission line with the Nobeyama Millimeter Array. In the cloud, 37 molecular clump s with local thermal equilibrium (LTE) masses of $2times10^2-6times10^3 M_odot$ were identified by using the {it clumpfind} algorithm. The velocity widths of the molecular clumps are about five-fold those of Galactic disk molecular clouds with the same radius. The virial-theorem masses are three-fold the LTE masses. The mass and size spectra can be described by power laws of $dN/dMpropto M^{-2.6pm0.1}$ ($Mgtrsim 900M_odot$) and $dN/dRpropto R^{-5.9pm0.3}$ ($Rgtrsim 0.35$ pc), respectively. The statistical properties of the region interacting with the Sgr A East shell and those of the non-interacting part of the cloud are significantly different. The interaction probably makes the mass function steeper, from $dN/dMpropto M^{-2.0pm0.1}$ in the non-interacting part to $dN/dMpropto M^{-4.0pm0.2}$ in the interacting region. On the other hand, the interaction presumably truncates the size spectrum on the larger side of $Rsim 0.4$ pc.
We surveyed the Aquila Rift complex including the Serpens South and W40 region in the NH$_3$(1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. The kinetic temperatures of the dense gas in the Aquila Rift complex range from 8.9 to 3 5.0K with an average of 15.3$pm$6.1K. Low gas temperatures associate with Serpens South ranging from 8.9 to 16.8K with an average 12.3$pm$1.7K, while dense gas in the W40 region shows higher temperatures ranging from 17.7 to 35.0K with an average of 25.1$pm$4.9 K. A comparison of kinetic temperatures against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low mass star formation region of Serpens South. In the high mass star formation region W40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH$_3$(1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 abundance obtained by a comparison with Herschel infrared continuum data representing dust emission we find values from 0.1 to 21$times 10^{-8}$ with an average of 6.9$(pm 4.5)times 10^{-8}$. Serpens South also shows a fractional total-NH3 abundance ranging from 0.2 to 21$times 10^{-8}$ with an average of 8.6($pm 3.8)times 10^{-8}$. In W40, values are lower, between 0.1 and 4.3$times 10^{-8}$ with an average of 1.6($pm 1.4)times 10^{-8}$. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا