ترغب بنشر مسار تعليمي؟ اضغط هنا

The giant effect of magnetic ordering on a sound velocity in a sigma-Fe55Cr45 alloy

60   0   0.0 ( 0 )
 نشر من قبل Stanislaw Dubiel
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied atomic dynamics of sigma-Fe(100-x)Cr(x) (x=45 and 49.5) alloys using nuclear inelastic scattering of synchrotron radiation. For the sigma-Fe55Cr45 alloy, the derived reduced iron-partial density of phonon states reveal a huge difference in the low-energy region between magnetic and paramagnetic states. The latter implies a ca.36% increase of the sound velocity in the magnetic phase, which testifies to a magnetically-induced hardening of the lattice.



قيم البحث

اقرأ أيضاً

Magnetic properties of a sigma-phase Fe60V40 intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-gla ss system. The magnetic ordering temperature was found to be T_C ca.170 K, while the spin-freezing temperature was ca.164 K. Its relative shift per decade of ac frequency was 0.002, a value smaller than that typical of canonical spin-glasses. Magnetic entropy change, DeltaS, in the vicinity of T_C was determined for magnetic field, H, ranging between 5 and 50 kOe. Analysis of DeltaS in terms of the power law yielded the critical exponent, n, vs. temperature with the minimum value of 0.75 at T_C, while from the analysis of a relative shift of the maximum value of DeltaS with the field a critical exponent Delta=1.7 was obtained. Based on scaling laws relationships values of other two exponents viz. betha=0.6 and gamma=1 were determined.
A giant magnetocaloric effect across the ferromagnetic (FM) to paramagnetic (PM) phase transition was observed in chemically synthesized Co2FeAl Heusler alloy nanoparticles with a mean diameter of 16 nm. In our previous report, we have observed a sig nificant enhancement in its saturation magnetization (Ms) and Curie temperature (Tc) as compared with the bulk counterpart. Motivated from those results, here, we aim to explore its magnetocaloric properties near the Tc. The magnetic entropy change shows a positive anomaly at 1252 K. Magnetic entropy change increases linearly with the magnetic field, and a large value of ~15 J/Kg-K is detected under a moderate field of 14 kOe. It leads to a net relative cooling power of 89 J/Kg for the magnetic field change of 14 kOe. To confirm the nature of magnetic phase transition, a detailed study of its magnetization is performed. The Arrott plot and nature of the universal curve conclude that FM to PM phase transition in the present system is of second-order.
Magnetization measurements were carried out in the in field-cooled (FC) and in zero-field-cooled (ZFC) conditions versus temperature, T, and external magnetic field, H, on a sigma-phase Fe47Mo53 compound. Analysis of the measured M_FC and M_ZFC curve s yielded values of characteristic temperatures: magnetic ordering (Curie) temperature, T_C, irreversibility temperature, T_ir, temperature of the maximum in M_ZFC, T_m, identified as the N.eel (T_N) temperature, and cross-over temperature, T_co. Based on these temperatures a magnetic phase diagram in the H-T plane was outlined. The field dependences of the characteristic temperatures viz. of the irreversibility and of the cross-over temperatures were described in terms of a power law with the exponent 0.5(1). In the whole range of H i.e. up to 800 Oe, except the one H>50 Oe, a rare double re-entrant transition viz. PM-FM-AF-SG takes place. For small fields i.e. H<50 Oe a single re-entrant transition viz. PM-FM-SG is revealed.
173 - C. C. Chou , S. Taran , J. L. Her 2010
We report the magnetic field dependent dc magnetization and the pressure-dependent (pmax ~ 16 kbar) ac susceptibilities Xp(T) on both powder and bulk multiferroic BiMnO3 samples, synthesized in different batches under high pressure. A clear ferromagn etic (FM) transition is observed at TC ~ 100 K, and increases with magnetic field. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. Ac susceptibility data indicate that both the FM peak and its temperature (TC) decrease simultaneously with increasing pressure. Interestingly, above a certain pressure (9 ~ 11 kbar), another peak appears at Tp ~ 93 K, which also decreases with increasing pressure, with both these peaks persisting over some intermediate pressure range (9 ~ 13 kbar). The FM peak disappears with further application of pressure; however, the second peak survives until present pressure limit (pmax ~ 16 kbar). These features are considered to originate from the complex interplay of the magnetic and orbital structure of BiMnO3 being affected by pressure.
We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs$_{2}$AgF$_{4}$. After self-consistently determining the harmonic and anharmonic Jahn-Teller d istortions, we show that the anharmonic distortion stabilizes the staggered x$^{2}$-z$^{2}$/y$^{2}$-z$^{2}$ orbital and ferromagnetic ground state, rather than the antiferromagnetic one. The amplitudes of lattice distortions, Q$_{2}$ and Q$_{3}$, the magnetic coupling strengthes, J$_{x,y}$, and the magnetic moment, are in good agreement with the experimental observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا