ترغب بنشر مسار تعليمي؟ اضغط هنا

The PdBI Arcsecond Whirlpool Survey (PAWS). The Role of Spiral Arms in Cloud and Star Formation

123   0   0.0 ( 0 )
 نشر من قبل Eva Schinnerer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The process that leads to the formation of the bright star forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the(ionized, atomic, molecular, dusty) interstellar medium (ISM) with star formation tracers (HII regions, young <10Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs: (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations (GMAs) being no special entities but the result of blending of gas arm/spur cross-sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated to the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer time-scale.



قيم البحث

اقرأ أيضاً

Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic Giant Molecular Cloud (GMC) catalog to date, containing 1,507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12C O(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that 30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically-motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51s inner disk.
The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high resolution PdBI Arcsecond Whirlpool Survey (PAWS) data, we unde rtake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival datasets we update the estimation of M51s position angle (PA=(173 +/- 3) deg) and inclination (i=(22 +/- 5) deg). Harmonic decomposition of the high resolution (40 pc) CO velocity field shows the first kinematic evidence of an m=3 wave in the inner disk of M51 with a corotation at R(CR,m=3)=1.1 +/- 0.1 kpc and a pattern speed of Omega_p(m=3) = 140 km/(s kpc). This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m=3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m=1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (Vsp) attributed to the different modes. The main spiral arm structure has <Vsp>=50-70 km/s, while the streaming velocity associated with the m=1 and m=3 modes is, in general, 2 times lower. Our joint analysis of HI and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology.
We describe and execute a novel approach to observationally estimate the lifetimes of giant molecular clouds (GMCs). We focus on the cloud population between the two main spiral arms in M51 (the inter-arm region) where cloud destruction via shear and star formation feedback dominates over formation processes. By monitoring the change in GMC number densities and properties from one side of the inter-arm to the other, we estimate the lifetime as a fraction of the inter-arm travel time. We find that GMC lifetimes in M51s inter-arm are finite and short, 20 to 30 Myr. Such short lifetimes suggest that cloud evolution is influenced by environment, in which processes can disrupt GMCs after a few free-fall times. Over most of the region under investigation shear appears to regulate the lifetime. As the shear timescale increases with galactocentric radius, we expect cloud destruction to switch primarily to star formation feedback at larger radii. We identify a transition from shear- to feedback-dominated disruption through a change in the behavior of the GMC number density. The signature suggests that shear is more efficient at completely dispersing clouds, whereas feedback transforms the population, e.g. by fragmenting high mass clouds into lower mass pieces. Compared to the characteristic timescale for molecular hydrogen in M51, our short lifetimes suggest that gas can remain molecular while clouds disperse and reassemble. We propose that galaxy dynamics regulates the cycling of molecular material from diffuse to bound (and ultimately star-forming) objects, contributing to long observed molecular depletion times in normal disk galaxies. We also speculate that, in more extreme environments such as elliptical galaxies and concentrated galaxy centers, star formation can be suppressed when the shear timescale becomes so short that some clouds can not survive to collapse and form stars.
111 - Eva Schinnerer 2013
The PdBI (Plateau de Bure Interferometer) Arcsecond Whirlpool Survey (PAWS) has mapped the molecular gas in the central ~9kpc of M51 in its 12CO(1-0) line emission at cloud-scale resolution of ~40pc using both IRAM telescopes. We utilize this dataset to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium (ISM), star formation and stellar populations of varying ages. Using 2-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (a) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential, (b) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depend on the gas density, (c) a close spatial relation between the PAH and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass,(d) that the I-H color map is an excellent predictor of the distribution (and to a lesser degree the brightness) of CO emission, and (e) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central ~9kpc can not be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from co-spatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment -- and thus the underlying gravitational potential -- for the distribution of molecular gas and star formation.
Relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in grand-design galaxy NGC 628 were studied. We found that the radial distribution of average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5-5 kpc. There are no correlations between the radial distributions of average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of average star formation rate in star formation regions in spiral arms and HI column density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا