ﻻ يوجد ملخص باللغة العربية
The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.
As the main $H^{-}$ ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of $H^{-}$ ions
IsoDAR is an experiment under development to search for sterile neutrinos using the isotope Decay-At-Rest (DAR) production mechanism, where protons impinging on $^9$Be create neutrons which capture on $^7$Li which then beta-decays producing $bar{ u}_
CW magnetrons, developed for industrial heaters, but driven by an injection-locking signal were suggested to power Superconducting RF (SRF) cavities due to higher efficiency and lower cost of generated RF power per Watt than traditionally used RF sou
Ion extraction from DECRIS-PM source is simulated by using initial distributions of ions at the extraction aperture obtained with NAM-ECRIS code. Three-dimensional calculations of plasma emissive surface are done and ions are traced in the extraction
A novel concept of high-power transmitters utilizing the Continuous Wave (CW) magnetrons, frequency-locked by phase-modulated signals has been proposed to compensate energy losses caused by Synchrotron Radiation (SR) in the electron ring of the MEIC