ﻻ يوجد ملخص باللغة العربية
Cloud Computing (CC) is a model for enabling on-demand access to a shared pool of configurable computing resources. Testing and evaluating the performance of the cloud environment for allocating, provisioning, scheduling, and data allocation policy have great attention to be achieved. Therefore, using cloud simulator would save time and money, and provide a flexible environment to evaluate new research work. Unfortunately, the current simulators (e.g., CloudSim, NetworkCloudSim, GreenCloud, etc..) deal with the data as for size only without any consideration about the data allocation policy and locality. On the other hand, the NetworkCloudSim simulator is considered one of the most common used simulators because it includes different modules which support needed functions to a simulated cloud environment, and it could be extended to include new extra modules. According to work in this paper, the NetworkCloudSim simulator has been extended and modified to support data locality. The modified simulator is called LocalitySim. The accuracy of the proposed LocalitySim simulator has been proved by building a mathematical model. Also, the proposed simulator has been used to test the performance of the three-tire data center as a case study with considering the data locality feature.
Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the networks diameter. Crux is a general framework to build locality-preserving d
State-of-the-art distributed in-memory datastores (FaRM, FaSST, DrTM) provide strongly-consistent distributed transactions with high performance and availability. Transactions in those systems are fully general; they can atomically manipulate any set
Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995).
As ISPs begin to cooperate to expose their network locality information as services, e.g., P4P, solutions based on locality information provision for P2P traffic localization will soon approach their capability limits. A natural question is: can we d
We present a simple, parallel and distributed algorithm for setting up and partitioning a sparse representation of a regular discretized simulation domain. This method is scalable for a large number of processes even for complex geometries and ensure