ﻻ يوجد ملخص باللغة العربية
Penetrance, which plays a key role in genetic research, is defined as the proportion of individuals with the genetic variants (i.e., {genotype}) that cause a particular trait and who have clinical symptoms of the trait (i.e., {phenotype}). We propose a Bayesian semiparametric approach to estimate the cancer-specific age-at-onset penetrance in the presence of the competing risk of multiple cancers. We employ a Bayesian semiparametric competing risk model to model the duration until individuals in a high-risk group develop different cancers, and accommodate family data using family-wise likelihoods. We tackle the ascertainment bias arising when family data are collected through probands in a high-risk population in which disease cases are more likely to be observed. We apply the proposed method to a cohort of 186 families with Li-Fraumeni syndrome identified through probands with sarcoma treated at MD Anderson Cancer Center from 1944 to 1982.
In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High quality data is not available in settin
Entity resolution identifies and removes duplicate entities in large, noisy databases and has grown in both usage and new developments as a result of increased data availability. Nevertheless, entity resolution has tradeoffs regarding assumptions of
Identifying individuals who are at high risk of cancer due to inherited germline mutations is critical for effective implementation of personalized prevention strategies. Most existing models to identify these individuals focus on specific syndromes
Lung cancer is among the most common cancers in the United States, in terms of incidence and mortality. In 2009, it is estimated that more than 150,000 deaths will result from lung cancer alone. Genetic information is an extremely valuable data sourc
Cancer development is a multistep process often starting with a single cell in which a number of epigenetic and genetic alterations have accumulated thus transforming it into a tumor cell. The progeny of such a single benign tumor cell expands in the