ﻻ يوجد ملخص باللغة العربية
The paper derives and analyses the (semi-)discrete dispersion relation of the Parareal parallel-in-time integration method. It investigates Parareals wave propagation characteristics with the aim to better understand what causes the well documented stability problems for hyperbolic equations. The analysis shows that the instability is caused by convergence of the amplification factor to the exact value from above for medium to high wave numbers. Phase errors in the coarse propagator are identified as the culprit, which suggests that specifically tailored coarse level methods could provide a remedy.
We show that for the simulation of crack propagation in quasi-brittle, two-dimensional solids, very good results can be obtained with an embedded strong discontinuity quadrilateral finite element that has incompatible modes. Even more importantly, we
The focus of our work is dispersive, second-order effective model describing the low-frequency wave motion in heterogeneous (e.g.~functionally-graded) media endowed with periodic microstructure. For this class of quasi-periodic medium variations, we
A weighted version of the parareal method for parallel-in-time computation of time dependent problems is presented. Linear stability analysis for a scalar weighing strategy shows that the new scheme may enjoy favorable stability properties with margi
Spatial symmetries and invariances play an important role in the description of materials. When modelling material properties, it is important to be able to respect such invariances. Here we discuss how to model and generate random ensembles of tenso
Mathematical modelling of ionic electrodiffusion and water movement is emerging as a powerful avenue of investigation to provide new physiological insight into brain homeostasis. However, in order to provide solid answers and resolve controversies, t