ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of plethories in characteristic zero

147   0   0.0 ( 0 )
 نشر من قبل Magnus Carlson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Magnus Carlson




اسأل ChatGPT حول البحث

We classify plethories over fields of characteristic zero, thus answering a question of Borger-Wieland and Bergman-Hausknecht. All plethories over characteristic zero fields are linear, in the sense that they are free plethories on a bialgebra. For the proof we need some facts from the theory of ring schemes where we extend previously known results. We also classify plethories with trivial Verschiebung over a perfect field of non-zero characteristic and indicate future work.

قيم البحث

اقرأ أيضاً

274 - Tilman Bauer 2011
Unstable operations in a generalized cohomology theory E give rise to a functor from the category of algebras over E to itself which is a colimit of representable functors and a comonoid with respect to composition of such functors. In this paper I s et up a framework to study the algebra of such functors, which I call formal plethories, in the case where $E_*$ is a Prufer ring. I show that the logarithmic functors of primitives and indecomposables give linear approximations of formal plethories by bimonoids in the 2-monoidal category of bimodules over a ring.
48 - Douglas A. Leonard 2013
The Qth-power algorithm produces a useful canonical P-module presentation for the integral closures of certain integral extensions of $P:=mathbf{F}[x_n,...,x_1]$, a polyonomial ring over the finite field $mathbf{F}:=mathbf{Z}_q$ of $q$ elements. Here it is shown how to use this for several small primes $q$ to reconstruct similar integral closures over the rationals $mathbf{Q}$ using the Chinese remainder theorem to piece together presentations in different positive characteristics, and the extended Euclidean algorithm to reconstruct rational fractions to lift these to presentations over $mathbf{Q}$.
91 - Vijaylaxmi Trivedi 2016
For a pair $(R, I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic $0$ and $I$ is a graded ideal of finite colength, we prove that the existence of $lim_{pto infty}e_{HK}(R_p, I_p)$ is equ ivalent, for any fixed $mgeq d-1$, to the existence of $lim_{pto infty}ell(R_p/I_p^{[p^m]})/p^{md}$. This we get as a consequence of Theorem 1.1: As $prightarrow infty $, the convergence of the HK density function $f{(R_p, I_p)}$ is equivalent to the convergence of the truncated HK density functions $f_m(R_p, I_p)$ (in $L^{infty}$ norm) of the {it mod $p$ reductions} $(R_p, I_p)$, for any fixed $mgeq d-1$. In particular, to define the HK density function $f^{infty}(R, I)$ in characteristic 0, it is enough to prove the existence of $lim_{pto infty} f_m(R_p, I_p)$, for any fixed $mgeq d-1$. This allows us to prove the existence of $e_{HK}^{infty}(R, I)$ in many new cases, {em e.g.}, when $mbox{Proj~R}$ is a Segre product of curves, for example.
We give a version of the usual Jacobian characterization of the defining ideal of the singular locus in the equal characteristic case: the new theorem is valid for essentially affine algebras over a complete local algebra over a mixed characteristic discrete valuation ring. The result makes use of the minors of a matrix that includes a row coming from the values of a $p$-derivation. To study the analogue of modules of differentials associated with the mixed Jacobian matrices that arise in our context, we introduce and investigate the notion of a perivation, which may be thought of, roughly, as a linearization of the notion of $p$-derivation. We also develop a mixed characteristic analogue of the positive characteristic $Gamma$-construction, and apply this to give additional nonsingularity criteria.
Let k be a perfect field of positive characteristic, k(t)_{per} the perfect closure of k(t) and A=k[[X_1,...,X_n]]. We show that for any maximal ideal N of A=k(t)_{per}otimes_k A, the elements in hat{A_N} which are annihilated by the Taylor Hasse-Sch midt derivations with respect to the X_i form a coefficient field of hat{A_N}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا