ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiar double-periodic pulsation in RR Lyrae stars of the OGLE collection. II. Short-period stars with dominant radial fundamental mode

90   0   0.0 ( 0 )
 نشر من قبل Zdenek Prudil
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a new group of double-periodic stars in the OGLE Galactic bulge photometry. In 38 stars identified as fundamental mode RR~Lyrae and 4 classified as the first-overtone RR~Lyrae, we detected additional shorter periodicity. Periods of the dominant variability in the newly discovered group are $0.28<P_{rm D}<0.41$,days. Period ratios $(0.68 - 0.72)$ are smaller than the period ratios of the Galactic bulge RRd stars. The typical amplitude ratio (of the additional to the dominant periodicity) is 20,% for the stars identified as fundamental mode RR~Lyrae and 50,% for stars classified as the first-overtone RR~Lyrae. Ten stars from our sample exhibit equidistant peaks in the frequency spectrum, that suggest the Blazhko-type modulation of the main pulsation frequency and/or the additional periodicity. The Fourier coefficients $R_{mathrm{21}}$ and $R_{mathrm{31}}$ are one of the lowest among fundamental mode RR Lyrae stars, but among the highest for the first-overtone pulsators. For the phase Fourier coefficients $varphi_{mathrm{21}}$ and $varphi_{mathrm{31}}$, our stars lie in between RRab and RRc stars. Discussed stars were compared with the radial, linear pulsation models. Their position in the Petersen diagram cannot be reproduced assuming that two radial modes are excited and their physical parameters are similar to that characteristic for RR~Lyrae stars. The non-radial mode scenario also faces difficulties. We conclude that the dominant variability is most likely due to pulsation in the radial fundamental mode including stars classified as the first overtone mode pulsators. At this point, we cannot explain the nature of the additional periodicity. Even more, classification of the stars as RR~Lyrae should be treated as tentative.

قيم البحث

اقرأ أيضاً

96 - H. Netzel , R. Smolec 2016
RR Lyrae stars are classical pulsating stars. They pulsate mostly in the radial fundamental mode (RRab stars), in the radial first overtone mode (RRc stars), or in both modes simultaneously (RRd stars). Collection of variable stars from the Optical G ravitational Lensing Experiment (OGLE) contains more than 38 000 RR Lyrae stars from the Galactic bulge. We analysed these data for RRc and RRd stars. We have found new members of radial-non-radial double-mode RR Lyrae stars, with characteristic period ratio of the two modes around 0.61. We increased the number of known RR Lyrae stars of this type by a factor of 8. We have also discovered another group of double-mode RR Lyrae stars. They pulsate in the first overtone and in another, unidentified mode, which has period longer than period of the undetected fundamental mode. The period ratios tightly cluster around 0.686. These proceedings are focused on this puzzling group. In particular, we report eight new members of the group.
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between 0.60 and 0.65. In the case of first overtone Cepheids three separate sequences populated by nearly 200 stars are formed in the Petersen diagram, i.e. the diagram of period ratio versus longer period. In the case of first overtone RR Lyrae stars (RRc stars) situation is less clear. A dozen or so such stars are known which form a clump in the Petersen diagram without any obvious structure. Interestingly, all first overtone RR Lyrae stars for which precise space-borne photometry is available show the additional mode, which suggests that its excitation is common. Motivated by these results we searched for non-radial modes in the OGLE-III photometry of RRc stars from the Galactic bulge. We report the discovery of 147 stars, members of a new group of double-mode, radial-non-radial mode pulsators. They form a clear and tight sequence in the Petersen diagram, with period ratios clustering around 0.613 with a signature of possible second sequence with higher period ratio (0.631). The scatter in period ratios of the already known stars is explained as due to population effects. Judging from the results of space observations this still mysterious form of pulsation must be common among RRc stars and with our analysis of the OGLE data we just touch the tip of the iceberg.
We analyzed photometry for the up-to-date collection of the first-overtone RR Lyrae stars (RRc; 11415 stars) and double-mode RR Lyrae stars (RRd; 148 stars) towards the Galactic bulge from the Optical Gravitational Lensing Experiment. We analyzed fre quency spectra of these stars in search for additional, low-amplitude signals, beyond the radial modes. We focused on stars from two groups: $RR_{0.61}$ and $RR_{0.68}$. In the first group, additional low-amplitude signals have periods shorter than the first-overtone period; period ratios fall in the 0.60-0.64 range. In the second group, additional low-amplitude signals have periods longer than the first-overtone period; period ratios tightly cluster around 0.68. Altogether we have detected 960 and 147 RR Lyrae stars that belong to $RR_{0.61}$ and $RR_{0.68}$ groups, respectively, which yield the incidence rates of 8.3 and 1.3 per cent of the considered sample. We discuss statistical properties of RR Lyrae stars with additional periodicities. For $RR_{0.61}$ group we provide strong arguments that additional periodicities are connected to non-radial pulsation modes of degrees $ell=8$ and $ell=9$, as proposed by Dziembowski. We have also detected two double-periodic variables, with two close periodicities, similar to RR Lyrae variable V37 in NGC 6362. Properties of these peculiar variables, which may form a new group of double-mode pulsators, are discussed.
The Optical Gravitational Lensing Experiment (OGLE) is a great source of top-quality photometry of classical pulsators. Collection of variable stars from the fourth part of the project contains more than 38 000 RR Lyrae stars. These stars pulsate mos tly in the radial fundamental mode (RRab), in radial first overtone (RRc) or in both modes simultaneously (RRd). Analysis of the OGLE data allowed to detect additional non-radial modes in RRc and in RRd stars. We have found more than 260 double-mode stars with characteristic period ratio of the additional (shorter) period to first overtone period around 0.61, increasing the number of known stars of this type by factor of 10. Stars from the OGLE sample form three nearly parallel sequences in the Petersen diagram. Some stars show more than one non-radial mode simultaneously. These modes belong to different sequences.
In an era of extensive photometric observations, the catalogs of RR Lyr type variable stars number tens of thousands of objects. The relation between the iron abundance [Fe/H] and the Fourier parameters of the stars light curve allows us to investiga te mean metallicities and metallicity gradients in various stellar environments, independently of time-consuming spectroscopic observations. In this paper we use almost 6500 $V$- and $I$-band light curves of fundamental mode RR Lyr stars from the OGLE-IV survey to provide a relation between the $V$- and $I$-band phase parameter $varphi_{31}$ used to estimate [Fe/H]. The relation depends on metallicity, which limits its applicability. We apply this relation to metallicity formulae developed for the Johnson $V$- and the Kepler $Kp$-band to obtain the relation between [Fe/H] and $varphi_{31}$ for the $I$-band photometry. Last, we apply the new relation of Nemec to the OGLE-IV fundamental mode RR Lyr stars data and construct a metallicity map of the Magellanic Clouds. Median [Fe/H] is $-1.39pm0.44$ dex for the LMC and $-1.77pm0.48$ dex for the SMC, on the Jurcsik metallicity scale. We also find a metallicity gradient within the LMC with a slope of $-0.029pm0.002$ dex/kpc in the inner 5 kpc and $-0.030 pm0.003$ dex/kpc beyond 8 kpc, and no gradient in-between ($-0.019pm0.002$ dex/kpc integrally). We do not observe a metallicity gradient in the SMC, although we show that the metal-rich RRab stars are more concentrated toward the SMC center than the metal-poor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا