ﻻ يوجد ملخص باللغة العربية
HR4796A is surrounded by a debris disc, observed in scattered light as an inclined ring. Past observations raised several questions. First, a strong brightness asymmetry detected in polarized reflected light recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR4796A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. We determine empirically the scattering phase function of the dust in the H band from 13.6deg to 166.6deg. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30deg. We analyse the reflectance spectra of the disc from the 0.95 to 1.6 microns, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 microns. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50deg points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust.
Aims. We aim to constrain the size and porosity of ejected dust particles from comet 252P/LINEAR and their evolution near the perihelion via near-infrared multiband polarimetry. A close approach of the comet to the Earth in March 2016 (~0.036 au) pro
The scattering properties of the dust originating from debris discs are still poorly known. The analysis of scattered light is however a powerful remote-sensing tool to understand the physical properties of dust particles orbiting other stars. Scatte
Debris disks or belts are important signposts for the presence of colliding planetesimals and, therefore, for ongoing planet formation and evolution processes in young planetary systems. Imaging of debris material at small separations from the star i
We present here new observations of the eccentric debris ring surrounding the Gyr-old solar-type star HD 202628: at millimeter wavelengths with ALMA, at far-infrared wavelengths with textit{Herschel}, and in scattered light with textit{HST}. The ring
We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU).