ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared scattered light properties of the HR4796A dust ring: a measured scattering phase function from 13.6deg to 166.6deg

52   0   0.0 ( 0 )
 نشر من قبل Julien Milli .
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HR4796A is surrounded by a debris disc, observed in scattered light as an inclined ring. Past observations raised several questions. First, a strong brightness asymmetry detected in polarized reflected light recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR4796A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. We determine empirically the scattering phase function of the dust in the H band from 13.6deg to 166.6deg. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30deg. We analyse the reflectance spectra of the disc from the 0.95 to 1.6 microns, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 microns. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50deg points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust.



قيم البحث

اقرأ أيضاً

102 - Y. G. Kwon , M. Ishiguro , J. Kwon 2019
Aims. We aim to constrain the size and porosity of ejected dust particles from comet 252P/LINEAR and their evolution near the perihelion via near-infrared multiband polarimetry. A close approach of the comet to the Earth in March 2016 (~0.036 au) pro vided a rare opportunity for the sampling of the comet with a high spatial resolution. Methods. We made NIR JHKS bands polarimetric observations of the comet for 12 days near perihelion, interspersed between broadband optical imaging observations over four months. In addition, dynamical simulation of the comet was performed 1000 yr backward in time. Results. We detected two discontinuous brightness enhancements. Before the first enhancement, the NIR polarization degrees were far lower than those of ordinary comets at a given phase angle. Soon after the activation, however, they increased by ~13 % at most, showing unusual blue polarimetric color over the J and H bands (-2.55 % / um on average) and bluing of both J-H and H-Ks dust color. Throughout the event, the polarization vector was marginally aligned perpendicular to the scattering plane. The subsequent postperihelion reactivation of the comet lasted for approximately 1.5 months, with a factor of ~30 times pre-activation dust mass-loss rates in the Rc band. Conclusions. The marked increase in the polarization degree with blue NIR polarimetric color is reminiscent of the behaviors of a fragmenting comet D/1999 S4 (LINEAR). The most plausible scenario for the observed polarimetric properties of 252P/LINEAR would be an ejection of predominantly large, compact dust particles from the desiccated surface layer. We conjecture that the more intense solar heating that the comet has received in the near-Earth orbit would cause the paucity of small, fluffy dust particles around the nucleus of the comet.
The scattering properties of the dust originating from debris discs are still poorly known. The analysis of scattered light is however a powerful remote-sensing tool to understand the physical properties of dust particles orbiting other stars. Scatte red light is indeed widely used to characterise the properties of cometary dust in the solar system. We aim to measure the morphology and scattering properties of the dust from the debris ring around HR4796A in polarised optical light. We obtained high-contrast polarimetric images of HR4796A in the wavelength range 600-900nm with the SPHERE / ZIMPOL instrument on the Very Large Telescope. We measured for the first time the polarised phase function of the dust in a debris system over a wide range of scattering angles in the optical. We confirm that it is incompatible with dust particles being compact spheres under the assumption of the Mie theory, and propose alternative scenarios compatible with the observations, such as particles with irregular surface roughness or aggregate particles.
Debris disks or belts are important signposts for the presence of colliding planetesimals and, therefore, for ongoing planet formation and evolution processes in young planetary systems. Imaging of debris material at small separations from the star i s very challenging but provides valuable insights into the spatial distribution of so-called hot dust produced by solid bodies located in or near the habitable zone. We report the first detection of scattered light from the hot dust around the nearby (d = 28.33 pc) A star HD 172555. We want to constrain the geometric structure of the detected debris disk using polarimetric differential Imaging (PDI) with a spatial resolution of 25 mas and an inner working angle of about 0.1$$. We measured the polarized light of HD 172555, with SPHERE-ZIMPOL, in the very broad band (VBB; $lambda=735$ nm) filter for the projected separations between 0.08$$ (2.3 au) and 0.77$$ (22 au). We constrained the disk parameters by fitting models for scattering of an optically thin dust disk taking the limited spatial resolution and coronagraphic attenuation of our data into account. The geometric structure of the disk in polarized light shows roughly the same orientation and outer extent as obtained from thermal emission at 18 $mu$m. Our image indicates the presence of a strongly inclined ($isim 103.5^circ$), roughly axisymmetric dust belt with an outer radius in the range between 0.3$$ (8.5 au) and 0.4$$ (11.3 au). We derive a lower limit for the polarized flux contrast ratio for the disk of $(F_{rm pol})_{rm disk}/F_{rm ast}> (6.2 pm 0.6)cdot 10^{-5}$ in the VBB filter. This ratio is small, only 9 %, when compared to the fractional infrared flux excess ($approx 7.2cdot 10^{-4}$). The model simulations show that more polarized light could be produced by the dust located inside 2 au, which cannot be detected with the instrument configuration used.
We present here new observations of the eccentric debris ring surrounding the Gyr-old solar-type star HD 202628: at millimeter wavelengths with ALMA, at far-infrared wavelengths with textit{Herschel}, and in scattered light with textit{HST}. The ring inner edge is found to be consistent between ALMA and textit{HST} data. As radiation pressure affects small grains seen in scattered-light, the ring appears broader at optical than at millimeter wavelengths. The best fit to the ring seen with ALMA has inner and outer edges at $143.1 pm 1.7$ AU and $165.5 pm 1.4$, respectively, and an inclination of $57.4^circ pm 0.4$ from face-on. The offset of the ring centre of symmetry from the star allows us to quantify its eccentricity to be $e=0.09_{-0.01}^{+0.02}$. This eccentric feature is also detected in low resolution textit{Herschel}/PACS observations, under the form of a pericenter-glow. Combining the infrared and millimeter photometry, we retrieve a disk grain size distribution index of $sim -3.4$, and therefore exclude in-situ formation of the inferred belt-shaping perturber, for which we provide new dynamical constraints. Finally, ALMA images show four point-like sources that exceed 100$,mu$Jy, one of them being just interior to the ring. Although the presence of a background object cannot be excluded, we cannot exclude either that this source is circumplanetary material surrounding the belt-shaper, in which case degeneracies between its mass and orbital parameters could be lifted, allowing us to fully characterize such a distant planet in this mass and age regime for the very first time.
We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU). This inner working angle is interior to the location of the systems gap inferred by previous studies using SED modeling (15 AU). We detected a candidate point source companion 1.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 deg), 0.01 Msun disk that has a partially depleted inner gap from the dust sublimation radius out to ~8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to variety of mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا