ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

204   0   0.0 ( 0 )
 نشر من قبل Lingzhi Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time domain astronomy at Dome A, Antarctica. Here we present the results of $i$ band images survey from AST3-1 towards one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with $i$ magnitude $leq$ 16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, EA), 27 pulsating variable stars ($delta$~Scuti, $gamma$~Doradus, $delta$~Cephei variable and RR Lyrae stars) and 248 other types of variables (unclassified periodic, multi-periodic and aperiodic variable stars). Among the eclipsing binaries, 34 show OConnell effects. One of the aperiodic variables shows a plateau light curve and another one shows a secondary maximum after peak brightness. We also detected a complex binary system with RS CVn-like light curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

قيم البحث

اقرأ أيضاً

88 - Bin Ma , Zhaohui Shang , Yi Hu 2018
The three Antarctic Survey Telescopes (AST3) aim to carry out time domain imaging survey at Dome A, Antarctica. The first of the three telescopes (AST3-1) was successfully deployed on January 2012. AST3-1 is a 500,mm aperture modified Schmidt telesco pe with a 680,mm diameter primary mirror. AST3-1 is equipped with a SDSS $i$ filter and a 10k $times$ 10k frame transfer CCD camera, reduced to 5k $times$ 10k by electronic shuttering, resulting in a 4.3 deg$^2$ field-of-view. To verify the capability of AST3-1 for a variety of science goals, extensive commissioning was carried out between March and May 2012. The commissioning included a survey covering 2000 deg$^2$ as well as the entire Large and Small Magellanic Clouds. Frequent repeated images were made of the center of the Large Magellanic Cloud, a selected exoplanet transit field, and fields including some Wolf-Rayet stars. Here we present the data reduction and photometric measurements of the point sources observed by AST3-1. We have achieved a survey depth of 19.3,mag in 60 s exposures with 5,mmag precision in the light curves of bright stars. The facility achieves sub-mmag photometric precision under stable survey conditions, approaching its photon noise limit. These results demonstrate that AST3-1 at Dome A is extraordinarily competitive in time-domain astronomy, including both quick searches for faint transients and the detection of tiny transit signals.
332 - Bin Ma , Yi Hu , Zhaohui Shang 2020
The 0.5,m Antarctic Survey Telescopes (AST3) were designed for time-domain optical/infrared astronomy. They are located in Dome~A, Antarctica, where they can take advantage of the continuous dark time during winter. Since the site is unattended in wi nter, everything for the operation, from observing to data reduction, had to be fully automated. Here, we present a brief overview of the AST3 project and some of its unique characteristics due to its location in Antarctica. We summarise the various components of the survey, including the customized hardware and software, that make complete automation possible.
We present results from a season of observations with the Chinese Small Telescope ARray (CSTAR), obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 20,000 stars with i<15.3 mag located in a 23 square-degree region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About $20,000$ light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
95 - Yi Yang 2016
The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, NIR, and THz astronomical observations. GATTINI was a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January, 2009. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90 deg x 90 deg) in the photometric B-, V-, and R-bands, cloud cover statistics measured during the 2009 winter season, and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S_B = 22.98, S_V = 21.86, and S_R = 21.68 mag arcsec^{-2}. These values were obtained around the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Mauna Kea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا