ﻻ يوجد ملخص باللغة العربية
We consider the natural generalization of the Schr{o}dinger equation to Markovian open system dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating the evolution of an $n$-qubit system for time $t$ within precision $epsilon$. If the Lindbladian consists of $mathrm{poly}(n)$ operators that can each be expressed as a linear combination of $mathrm{poly}(n)$ tensor products of Pauli operators then the gate cost of our algorithm is $O(t, mathrm{polylog}(t/epsilon)mathrm{poly}(n))$. We also obtain similar bounds for the cases where the Lindbladian consists of local operators, and where the Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution as Schr{o}dinger evolution on a larger system and tracing out the ancillary system: the cost of such a textit{reduction} incurs an efficiency overhead of $O(t^2/epsilon)$ even before the Hamiltonian evolution simulation begins. Instead, the approach of our algorithm is to use a novel variation of the linear combinations of unitaries construction that pertains to channels.
Due to complexity of the systems and processes it addresses, the development of computational quantum physics is influenced by the progress in computing technology. Here we overview the evolution, from the late 1980s to the current year 2020, of the
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equiva
A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely ap
We introduce a framework for the calculation of ground and excited state energies of bosonic systems suitable for near-term quantum devices and apply it to molecular vibrational anharmonic Hamiltonians. Our method supports generic reference modal bas
The phenomenon of entanglement sudden death (ESD) in finite dimensional composite open systems is described here for both bi-partite as well as multipartite cases, where individual subsystems undergo Lindblad type heat bath evolution. ESD is found to