ﻻ يوجد ملخص باللغة العربية
The notion of strong external difference family (SEDF) in a finite abelian group $(G,+)$ is raised by M. B. Paterson and D. R. Stinson [5] in 2016 and motivated by its application in communication theory to construct $R$-optimal regular algebraic manipulation detection code. A series of $(n,m,k,lambda)$-SEDFs have been constructed in [5, 4, 2, 1] with $m=2$. In this note we present an example of (243, 11, 22, 20)-SEDF in finite field $mathbb{F}_q$ $(q=3^5=243).$ This is an answer for the following problem raised in [5] and continuously asked in [4, 2, 1]: if there exists an $(n,m,k,lambda)$-SEDF for $mgeq 5$.
Multiple sources submit updates to a monitor through an M/M/1 queue. A stochastic hybrid system (SHS) approach is used to derive the average age of information (AoI) for an individual source as a function of the offered load of that source and the co
We find three families of twisting maps of K^m with K^n. One of them is related to truncated quiver algebras, the second one consists of deformations of the first and the third one requires m=n and yields algebras isomorphic to M_n(K). Using these fa
Strong external difference family (SEDF) and its generalizations GSEDF, BGSEDF in a finite abelian group $G$ are combinatorial designs raised by Paterson and Stinson [7] in 2016 and have applications in communication theory to construct optimal stron
BCH codes are an interesting class of cyclic codes due to their efficient encoding and decoding algorithms. In many cases, BCH codes are the best linear codes. However, the dimension and minimum distance of BCH codes have been seldom solved. Until no
In this paper, we study the $sigma$-self-orthogonality of constacyclic codes of length $p^s$ over the finite commutative chain ring $mathbb F_{p^m} + u mathbb F_{p^m}$, where $u^2=0$ and $sigma$ is a ring automorphism of $mathbb F_{p^m} + u mathbb F_