ترغب بنشر مسار تعليمي؟ اضغط هنا

On the computation of the HNF of a module over the ring of integers of a number field

75   0   0.0 ( 0 )
 نشر من قبل Tommy Hofmann
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a variation of the modular algorithm for computing the Hermite normal form of an $mathcal O_K$-module presented by Cohen, where $mathcal O_K$ is the ring of integers of a number field $K$. An approach presented in (Cohen 1996) based on reductions modulo ideals was conjectured to run in polynomial time by Cohen, but so far, no such proof was available in the literature. In this paper, we present a modification of the approach of Cohen to prevent the coefficient swell and we rigorously assess its complexity with respect to the size of the input and the invariants of the field $K$.

قيم البحث

اقرأ أيضاً

We compute the etale cohomology ring $H^*(text{Spec } mathcal{O}_K,mathbb{Z}/nmathbb{Z})$ where $mathcal{O}_K$ is the ring of integers of a number field $K.$ As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim.
For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(mathcal{O}_F)$ is as predicted by this conjecture.
Most hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriat e Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
We develop algorithms to turn quotients of rings of rings of integers into effective Euclidean rings by giving polynomial algorithms for all fundamental ring operations. In addition, we study normal forms for modules over such rings and their behavio r under certain quotients. We illustrate the power of our ideas in a new modular normal form algorithm for modules over rings of integers, vastly outperforming classical algorithms.
One of the many number theoretic topics investigated by the ancient Greeks was perfect numbers, which are positive integers equal to the sum of their proper positive integral divisors. Mathematicians from Euclid to Euler investigated these mysterious numbers. We present results on perfect numbers in the ring of Eisenstein integers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا