ﻻ يوجد ملخص باللغة العربية
Determination of the proper power-counting scheme is an important issue for the systematic application of Chiral Effective Field Theory in nuclear physics. We analyze the cutoff dependence of three-nucleon observables (the neutron-deuteron scattering lengths and the triton binding energy) at the leading and next-to-leading orders of a power counting that ensures order-by-order renormalization in the two-nucleon system. Our results imply that three-body forces are not needed for renormalization of the three-nucleon system up to next-to-leading order, as usually assumed in the literature. (Erratum to the original article is included)
We study the scattering of a pseudoscalar meson off one ground state octet baryon in covariant baryon chiral perturbation theory (BChPT) up to the next-to-next-to-leading order. The inherent power counting breaking terms are removed within extended-o
We study ground-state energies and charge radii of closed-shell medium-mass nuclei based on novel chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions, with a focus on exploring the connections between finite nuclei and nuclear matter. To
We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact t
We discuss the results of a systematic calculation of the next-to-next-to-leading order amplitude for the pp -> pppi^0 S-wave production at the threshold in heavy-baryon chiral perturbation theory. We find six new diagrams, two of which can be viewed
We study the three-body systems of ${}^{3}mathrm{He}$ and $pd$ scattering and demonstrate, both analytically and numerically, that a new $pd$ three-body force is needed at next-to-leading order in pionless effective field theory. We also show that at