ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum corrections for the cubic Galileon in the covariant language

75   0   0.0 ( 0 )
 نشر من قبل Ippocratis Saltas Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.



قيم البحث

اقرأ أيضاً

We study the role of field redefinitions in general scalar-tensor theories. In particular, we first focus on the class of field redefinitions linear in the spin-2 field and involving derivatives of the spin-0 mode, generically known as disformal tran sformations. We start by defining the action of a disformal transformation in the tangent space. Then, we take advantage of the great economy of means of the language of differential forms to compute the full transformation of Horndeskis theory under general disformal transformations. We obtain that Horndeskis action maps onto itself modulo a reduced set of non-Horndeski Lagrangians. These new Lagrangians are found to be invariant under disformal transformation that depend only in the first derivatives of the scalar. Moreover, these combinations of Lagrangians precisely appear when expressing in our basis the constraints of the recently proposed Extended Scalar-Tensor (EST) theories. These results allow us to classify the different orbits of scalar-tensor theories invariant under particular disformal transformations, namely the special disformal, kinetic disformal and disformal Horndeski orbits. In addition, we consider generalizations of this framework. We find that there are possible well-defined extended disformal transformations that have not been considered in the literature. However, they generically cannot link Horndeski theory with EST theories. Finally, we study further generalizations in which extra fields with different spin are included. These field redefinitions can be used to connect different gravity theories such as multi-scalar-tensor theories, generalized Proca theories and bi-gravity. We discuss how the formalism of differential forms could be useful for future developments in these lines.
We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the clas sical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.
We develop a new class of supergravity cosmological models where inflation is induced by terms in the Kahler potential which mix a nilpotent superfield $S$ with a chiral sector $Phi$. As the new terms are non-(anti)holomorphic, and hence cannot be re moved by a Kahler transformation, these models are intrinsically Kahler potential driven. Such terms could arise for example due to a backreaction of an anti-D3 brane on the string theory bulk geometry. We show that this mechanism is very general and allows for a unified description of inflation and dark energy, with controllable SUSY breaking at the vacuum. When the internal geometry of the bulk field is hyperbolic, we prove that small perturbative Kahler corrections naturally lead to $alpha$-attractor behaviour, with inflationary predictions in excellent agreement with the latest Planck data
In this paper we apply the tools of the dynamical systems theory in order to uncover the whole asymptotic structure of the vacuum interactions of a galileon model with a cubic derivative interaction term. It is shown that, contrary to what occurs in the presence of background matter, the galileon interactions of vacuum appreciably modify the late-time cosmic dynamics. In particular, a local late-time attractor representing phantom behavior arises which is inevitably associated with a big rip singularity. It seems that the gravitational interactions of the background matter with the galileon screen the effects of the gravitational self-interactions of the galileon, thus erasing any potential modification of the late-time dynamics by the galileon vacuum processes. Unlike other galileon models inspired in the DGP scenario, self-accelerating solutions do not arise in this model.
With recent constraints on the propagation speed of gravitational waves, the class of scalar-tensor theories has significantly been reduced. We consider one of the surviving models still relevant for cosmology and investigate its radiative stability. The model contains operators with explicit breaking of the Galileon symmetry and we study whether they harm the re-organization of the effective field theory. Within the regime of validity we establish a non-renormalization theorem and show explicitly that the quantum corrections, to one-loop, do not detune the classical Lagrangian generating suppressed counterterms. This is striking since the non-renormalization theorem is established in the presence of a genuine Galileon symmetry breaking term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا