ﻻ يوجد ملخص باللغة العربية
The first aim of this paper is to study the $p$-local higher homotopy commutativity of Lie groups in the sense of Sugawara. The second aim is to apply this result to the $p$-local higher homotopy commutativity of gauge groups. Although the higher homotopy commutativity of Lie groups in the sense of Williams is already known, the higher homotopy commutativity in the sense of Sugawara is necessary for this application. The third aim is to resolve the $5$-local higher homotopy non-commutativity problem of the exceptional Lie group $mathrm{G}_2$, which has been open for a long time.
The $p$-local homotopy types of gauge groups of principal $G$-bundles over $S^4$ are classified when $G$ is a compact connected exceptional Lie group without $p$-torsion in homology except for $(G,p)=(mathrm{E}_7,5)$.
Let $G$ be a compact connected Lie group with $pi_1(G)congmathbb{Z}$. We study the homotopy types of gauge groups of principal $G$-bundles over Riemann surfaces. This can be applied to an explicit computation of the homotopy groups of the moduli spaces of stable vector bundles over Riemann surfaces.
We survey computations of stable motivic homotopy groups over various fields. The main tools are the motivic Adams spectral sequence, the motivic Adams-Novikov spectral sequence, and the effective slice spectral sequence. We state some projects for future study.
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi
A p-compact group is a mod p homotopy theoretical analogue of a compact Lie group. It is determined the homotopy nilpotency class of a p-compact group having the homotopy type of the $p$-completion of the direct product of spheres.