ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical model of antishadowing of the nuclear gluon distribution

65   0   0.0 ( 0 )
 نشر من قبل Vadim Guzey
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف L. Frankfurt




اسأل ChatGPT حول البحث

We explore the theoretical observation that within the leading twist approximation, the nuclear effects of shadowing and antishadowing in non-perturbative nuclear parton distribution functions (nPDFs) at the input QCD evolution scale involve diffraction on nucleons of a nuclear target and originate from merging of two parton ladders belonging to two different nucleons, which are close in the rapidity space. It allows us to propose that for a given momentum fraction $x_P$ carried by the diffractive exchange, nuclear shadowing and antishadowing should compensate each other in the momentum sum rule for nPDFs locally on the interval $ln (x/x_P) le 1$. We realize this by constructing an explicit model of nuclear gluon antishadowing, which has a wide support in $x$, $10^{-4} < x < 0.2$, peaks at $x=0.05-0.1$ at the level of $approx 15$% for $^{208}$Pb at $Q_0^2=4$ GeV$^2$ and rather insignificantly depends on details of the model. We also studied the impact parameter $b$ dependence of antishadowing and found it to be slow.

قيم البحث

اقرأ أيضاً

Using momentum sum rule for evolution equations for Double Parton Distribution Functions (DPDFs) in the leading logarithmic approximation, we find that the double gluon distribution function can be uniquely constrained via the single gluon distributi on function. We also study numerically its evolution with a hard scale and show that an approximately factorized ansatz into the product of two single gluon distributions performs quite well at small values of $x$ but is always violated for larger values, as expected.
We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distr ibution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. We also study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violated in agreement with the sum rule.
In the framework of a dynamical gluon mass model recently developed, we investigate the effects of two essential parameters in the description of elastic $pp$ and $bar{p}p$ data at high energies: the soft Pomeron intercept and the dynamical gluon mas s. By considering relevant numerical intervals for both parameters and fits to the experimental data up to 1.8 TeV, with good statistical results, we discuss the predictions of the physical quantities at the LHC energies (7 and 14 TeV). We conclude that these quantities are sensitive to those variations and the predictions are correlated with the intervals considered for both parameters. This conclusion puts limits on the reliability of QCD inspired models predictions at the LHC energies, mainly those models with ad hoc fixed values for the mass scale and the Pomeron intercept.
We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method as a convolution of the perturbative gluon splitting function with the collinear integrated double gluon distribution and the Sudakov form factors. We analyze the dependence on the transverse momenta, longitudinal momentum fractions and hard scales. We find that the unintegrated gluon distribution factorizes into a product of two single unintegrated gluon distributions in the region of small values of $x$, provided the splitting contribution is included and the momentum sum rule is satisfied.
We present a model calculation of transverse-momentum-dependent distributions (TMDs) of gluons in the nucleon. The model is based on the assumption that a nucleon can emit a gluon, and what remains after the emission is treated as a single spectator particle. This spectator particle is considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function. The nucleon-gluon-spectator coupling is described by an effective vertex containing two form factors. We fix the model parameters to obtain the best agreement with collinear gluon distributions extracted from global fits. We study the tomography in momentum space of gluons inside nucleons for various combinations of their polarizations. These can be used to make predictions of observables relevant for gluon TMD studies at current and future collider facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا