ﻻ يوجد ملخص باللغة العربية
The production of anti-hydrogen ions in the GBAR experiment will occur via a two step charge exchange process. In a first reaction, the anti-protons from the ELENA ring at CERN will capture a positron from a positronium target producing anti-hydrogen atoms. Those interacting in the same positronium target will produce in a second step anti-hydrogen ions. This results in a dependence for the anti-ions production rate which is roughly proportional to the positronium density squared. We present a scheme to increase the anti-ions production rate in the GBAR experiment by tailoring the anti-proton to the positron pulse in order to maximise the temporal overlap of Ps and anti-protons. Detailed simulations show that an order of magnitude could be gained by bunching the anti-protons from ELENA. In order to avoid losses in their capture in the Paul trap due to the energy spread introduced by the bunching, debunching with a symmetrical inverted pulse can be applied to the anti-hydrogen ions.
Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection b
The hadronic shift in pionic hydrogen has been redetermined to be $epsilon_{1s}=7.086,pm,0.007(stat),pm,0.006(sys)$,eV by X-ray spectroscopy of ground state transitions applying various energy calibration schemes. The experiment was performed at the
We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment.
The dynamic electron-ion collisions play an important rolein determining the static and transport properties of warmdense matter (WDM). Electron force field (eFF) method is applied to study the ionic transport properties of warm densehydrogen. Compar
Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a c