ﻻ يوجد ملخص باللغة العربية
We report the fabrication of few hundred microns long, hundreds of nanometers wide and 30 nm thick meanders made from YBa2CU3O7. Thin films protected by a 8 nm-thick Ce02 cap layer have been patterned by high energy (a few tens of keV) oxygen ion irradiation through photoresist masks. DC and RF characterizations outline good superconducting properties of nano-meanders that could be used as Superconducting Single Photon Detectors (SSPD). By mean of a resonant method, their inductance, which mainly sets the maximum speed of these devices, has been measured on a wide range of temperature. It compares favorably with expected values calculated from the geometry of the meanders and the known London penetration depth in YBa2CU3O7.
We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens n
Using two-temperature model coupled with modified time-dependent Ginzburg-Landau equation we calculate the delay time $tau_d$ in appearance of growing normal domain in the current-biased superconducting strip after absorption of the single photon. We
We estimate the depairing current of superconducting nanowire single photon detectors (SNSPDs) by studying the dependence of the nanowires kinetic inductance on their bias current. The kinetic inductance is determined by measuring the resonance frequ
We analyze the influence of the surface passivation produced by oxides on the superconducting properties of $gamma$-Mo$_2$N ultra-thin films. The superconducting critical temperature of thin films grown directly on Si (100) with those using a buffer
We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated o