ﻻ يوجد ملخص باللغة العربية
The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a {mu} storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of $ u_e (bar{ u}_e)$ and $bar{ u}_mu$ $({ u}_mu)$ beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.
Radio frequency (RF) windows are historically a point where failure occurs in input-power couplers for accelerators. To understand more about the reliability of high power RF windows, lifetime testing was done on 700 MHz coaxial RF windows for the Lo
Particle accelerators that use electromagnetic fields to increase a charged particles energy have greatly advanced the development of science and industry since invention. However, the enormous cost and size of conventional radio-frequency accelerato
The next generation of lepton flavor violation experiments need high intensity and high quality muon beams. Production of such beams requires sending a short, high intensity proton pulse to the pion production target, capturing pions and collecting t
Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, pro
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the prop