ﻻ يوجد ملخص باللغة العربية
The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius puzzle. To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.
In 2010 the proton charge radius was extracted for the first time from muonic hydrogen, a bound state of a muon and a proton. The value obtained was five standard deviations away from the regular hydrogen extraction. Taken at face value, this might b
The proton size, specifically its charge radius, was thought known to about 1% accuracy. Now a new method probing the proton with muons instead of electrons finds a radius about 4% smaller, and to boot gives an uncertainty limit of about 0.1%. We rev
High-precision measurements of the proton radius from laser spectroscopy of muonic hydrogen demonstrated up to six standard deviations smaller values than obtained from electron-proton scattering and hydrogen spectroscopy. The status of this discrepa
The difference in proton radii measured with $mu p$ atoms and with $ep$ atoms and scattering remains an unexplained puzzle. The PSI MUSE proposal is to measure $mu p$ and $e p$ scattering in the same experiment at the same time. The experiment will d
We review the status of the proton charge radius puzzle. Emphasis is given to the various experiments initiated to resolve the conflict between the muonic hydrogen results and the results from scattering and regular hydrogen spectroscopy.