ترغب بنشر مسار تعليمي؟ اضغط هنا

Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media

94   0   0.0 ( 0 )
 نشر من قبل Evgeny Andrianov Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables to implement many properties of the electromagnetic field at the nanoscale in novel practical applications. A first-principles quantum mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom, and does not allow the electromagnetic field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop the framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove, and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe non-uniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.

قيم البحث

اقرأ أيضاً

Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up to approximately $500$ MHz/nm and dispersive c oupling of $2$ GHz/nm enable measurements of sub-pg torsional and cantilever-like mechanical resonances with a thermally-limited torque detection sensitivity of 1.2$times 10^{-20} text{N} , text{m}/sqrt{text{Hz}}$ in ambient conditions and 1.3$times 10^{-21} text{N} , text{m}/sqrt{text{Hz}}$ in low vacuum. Interference between optomechanical coupling mechanisms is observed to enhance detection sensitivity and generate a mechanical-mode-dependent optomechanical wavelength response.
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn etic fields. We show that by periodically modulating the spin-orbit coupling along the quantum wire axis, it is possible to create the spatial analogue of spin resonance, without the need for any real magnetic fields. The mapping of time-dependent operations onto a spatial axis suggests a new mode for quantum information processing in which gate operations are encoded into the band structure of the material. We describe a realization of such materials within nanowires at the interface of LaAlO3/SrTiO3 heterostructures.
We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxat ion, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that the Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant dissipation when the decoherence time is substantially shorter than the cycle of driving, once the driving field strength becomes strong enough. In an off-resonant condition, we demonstrate that the Floquet states can be realized even in weak field regimes because the system is not excited and the decoherence mechanism is not activated. Once the field strength becomes strong enough, the system can be excited by nonlinear processes and the decoherence process becomes active. As a result, the Floquet states are significantly disturbed by the environment even in the off-resonant condition. Thus, we show here that the suppression of heating is a key condition for the realization of Floquet states in both on and off-resonant conditions not only because it prevents material damage but also because it contributes to preserving coherence.
Coupling with an external environment inevitably affects the dynamics of a quantum system. Here, we consider how charging performances of a quantum battery, modelled as a two level system, are influenced by the presence of an Ohmic thermal reservoir. The latter is coupled to both longitudinal and transverse spin components of the quantum battery including decoherence and pure dephasing mechanisms. Charging and discharging dynamics of the quantum battery, subjected to a static driving, are obtained exploiting a proper mapping into the so-called spin-boson model. Analytic expressions for the time evolution of the energy stored in the weak coupling regime are presented relying on a systematic weak damping expansion. Here, decoherence and pure dephasing dissipative coupling are discussed in details. We argue that the former results in better charging performances, showing also interesting features reminiscent of the Lamb shift level splitting renormalization induced by the presence of the reservoir. Charging stability is also addressed, by monitoring the energy behaviour after the charging protocol has been switched off. This study presents a general framework to investigate relaxation effects, able to include also non Markovian effects, and it reveals the importance of controlling and, possibly, engineering system-bath coupling in the realization of quantum batteries.
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the inter layer interactions. In this topical review, we cover fabrication and characterization of van der Waals heterosructures with a focus on heterobilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those heterobilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides heterostructures are presented and possible optical transitions between different valleys, appearance of moire patterns and signatures of moire excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا