ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved CO SLED of the Luminous Merger Remnant NGC 1614 with ALMA

73   0   0.0 ( 0 )
 نشر من قبل Toshiki Saito
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-resolution (1.0) Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO (1-0) and CO (2- 1) rotational transitions toward the nearby IR-luminous merger NGC 1614 supplemented with ALMA archival data of CO (3-2), and CO (6-5) transitions. The CO (6-5) emission arises from the starburst ring (central 590 pc in radius), while the lower-$J$ CO lines are distributed over the outer disk ($sim$ 3.3 kpc in radius). Radiative transfer and photon dominated region (PDR) modeling reveal that the starburst ring has a single warmer gas component with more intense far-ultraviolet radiation field ($n_{rm{H_2}}$ $sim$ 10$^{4.6}$ cm$^{-3}$, $T_{rm{kin}}$ $sim$ 42 K, and $G_{rm{0}}$ $sim$ 10$^{2.7}$) relative to the outer disk ($n_{rm{H_2}}$ $sim$ 10$^{5.1}$ cm$^{-3}$, $T_{rm{kin}}$ $sim$ 22 K, and $G_{rm{0}}$ $sim$ 10$^{0.9}$). A two-phase molecular interstellar medium with a warm and cold ($>$ 70 K and $sim$ 19 K) component is also an applicable model for the starburst ring. A possible source for heating the warm gas component is mechanical heating due to stellar feedback rather than PDR. Furthermore, we find evidence for non-circular motions along the north-south optical bar in the lower-$J$ CO images, suggesting a cold gas inflow. We suggest that star formation in the starburst ring is sustained by the bar-driven cold gas inflow, and starburst activities radiatively and mechanically power the CO excitation. The absence of a bright active galactic nucleus can be explained by a scenario that cold gas accumulating on the starburst ring is exhausted as the fuel for star formation, or is launched as an outflow before being able to feed to the nucleus.

قيم البحث

اقرأ أيضاً

In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Milli meter/sub-millimeter Array. We covered most of the 3-mm and 1.3-mm bands for a multi-species, multi-transition analysis. We first analyzed intensity ratio maps of selected lines such as HCN/HCO$^+$, which shows no enhancement at an AGN. We then compared the chemical compositions within NGC 3256 at the two nuclei, tidal arms, and positions with influence from galactic outflows. We found the largest variation in SiO and CH$_3$OH, species that are likely to be enhanced by shocks. Next, we compared the chemical compositions in the nuclei of NGC 3256, NGC 253, and Arp 220; these galactic nuclei have varying star formation efficiencies. Arp 220 shows higher abundances of SiO and HC$_3$N than NGC 3256 and NGC 253. Abundances of most species do not show strong correlation with the star formation efficiencies, although the CH$_3$CCH abundance seems to have a weak positive correlation with the star formation efficiency. Lastly, the chemistry of spiral arm positions in NGC 3256 is compared with that of W 51, a Galactic molecular cloud complex in a spiral arm. We found higher fractional abundances of shock tracers, and possibly also higher dense gas fraction in NGC 3256 compared with W 51.
We report ALMA and SMA observations of the luminous infrared merger NGC 3256, the most luminous galaxy within z=0.01. Both of the two merger nuclei separated by 5 (0.8 kpc) on the sky have a compact concentration of molecular gas, i.e., nuclear disks with Sigma_mol > 10^3 Msun pc^-2. The one at the northern nucleus is face-on while the southern nuclear disk is almost edge-on. The northern nucleus is more massive and has molecular arcs and spiral arms around. The high-velocity molecular gas previously found in the system is resolved to two molecular outflows associated with each of the two nuclei. The molecular outflow from the northern nuclear disk is part of a starburst-driven superwind seen nearly pole on. Its maximum velocity is >750 km/s and its mass outflow rate is estimated to be > 60 Msun/yr for a conversion factor N_{H_2}/I_{CO(1-0)}=1x10^20 cm^-2/(K km/s). The outflow from the southern nucleus is a highly collimated bipolar molecular jet seen nearly edge-on. Its line-of-sight velocity increases with distance out to 300 pc from the southern nucleus. Its maximum de-projected velocity is ~2000 km/s for the estimated inclination and should exceed 1000 km/s even allowing for its uncertainty. The mass outflow rate is estimated to be >50 Msun/yr for this outflow. There are possible signs that this southern outflow has been driven by a bipolar radio jet from an AGN that became inactive very recently. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate in NGC 3256. The feedback from nuclear activities in the form of molecular outflows is therefore significant in the gas consumption budget, and hence evolution, of this luminous infrared galaxy. (abridged)
The merger remnant NGC 34 is a local luminous infrared galaxy (LIRG) hosting a nuclear starburst and a hard X-ray source associated with a putative, obscured Seyfert~2 nucleus. In this work, we use adaptive optics assisted near infrared (NIR) integra l field unit observations of this galaxy to map the distribution and kinematics of the ionized and molecular gas in its inner $mathrm{1.2,kpc times 1.2,kpc}$, with a spatial resolution of 70~pc. The molecular and ionized gas kinematics is consistent with a disc with projected major axis along a mean PA~=~$mathrm{-9^{circ}.2 pm 0^{circ}.9}$. Our main findings are that NGC~34 hosts an AGN and that the nuclear starburst is distributed in a circumnuclear star-formation ring with inner and outer radii of $approx$~60 and 180~pc, respectively, as revealed by maps of the $mathrm{[Fe II] / Pabeta}$ and $mathrm{H_{2} / Brgamma}$ emission-line ratios, and corroborated by PCA Tomography analysis. The spatially resolved NIR diagnostic diagram of NGC~34 also identifies a circumnuclear structure dominated by processes related to the stellar radiation field and a nuclear region where $[Fe II]$ and H$_2$ emissions are enhanced relative to the hydrogen recombination lines. We estimate that the nuclear X-ray source can account for the central H$_2$ enhancement and conclude that $[Fe II]$ and H$_2$ emissions are due to a combination of photo-ionization by young stars, excitation by X-rays produced by the AGN and shocks. These emission lines show nuclear, broad, blue-shifted components that can be interpreted as nuclear outflows driven by the AGN.
373 - C. K. Xu , C. Cao , N. Lu 2014
We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435um dust continuum emission in the central kpc of NGC 1614, a local luminous infrared galaxy (LIRG) at a distance of 67.8 Mpc (1 arcsec = 329 pc). The CO emission is well resolved by the ALMA beam (0.26 x 0.20) into a circum-nuclear ring, with an integrated flux of f_{CO(6-5)} = 898 (+-153) Jy km/s, which is 63(+-12)% of the total CO(6-5) flux measured by Herschel. The molecular ring, located between 100pc < r < 350pc from the nucleus, looks clumpy and includes seven unresolved (or marginally resolved) knots with median velocity dispersion of 40 km/s. These knots are associated with strong star formation regions with Sigma_{SFR} 100 M_sun/yr/kpc^{2} and Sigma_{Gas} 1.0E4 M_sun/pc^{2}. The non-detections of the nucleus in both the CO (6-5) line emission and the 435um continuum rule out, with relatively high confidence, a Compton-thick AGN in NGC 1614. Comparisons with radio continuum emission show a strong deviation from an expected local correlation between Sigma_{Gas} and Sigma_{SFR}, indicating a breakdown of the Kennicutt-Schmidt law on the linear scale of 100 pc.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25. We successfully obtained global distri butions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (LCO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear LCO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear LCO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا