ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure of the hot gas in simulations of galaxy clusters

76   0   0.0 ( 0 )
 نشر من قبل Susana Planelles
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zeldovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z=1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster center and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping ($sqrt C_{rho}sim 1.2$ at $R_{200}$) in good agreement with recent observational estimates. The simulated $Y_{SZ}-M$ scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.



قيم البحث

اقرأ أيضاً

We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M50 0,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
170 - M. Sun , N. Sehgal , G. M. Voit 2010
Recent measurements of the Sunyaev-Zeldovich (SZ) angular power spectrum from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT) demonstrate the importance of understanding baryon physics when using the SZ power spectrum to cons train cosmology. This is challenging since roughly half of the SZ power at l=3000 is from low-mass systems with 10^13 h^-1 M_sun < M_500 < 1.5x10^14 h^-1 M_sun, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. (2009). The group Y_{sph, 500} - M_500 relation agrees with the one for clusters derived by Arnaud et al. (2010). The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. (2010). With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.
We present the Rhapsody-G suite of cosmological hydrodynamic AMR zoom simulations of ten massive galaxy clusters at the $M_{rm vir}sim10^{15},{rm M}_odot$ scale. These simulations include cooling and sub-resolution models for star formation and stell ar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal AGN feedback. For cluster scaling relations we find that the simulations match well the $M_{500}-Y_{500}$ scaling of Planck SZ clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance matching constraints and central galaxies have star formation rates consistent with recent observations. While our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intra-cluster medium.
We analyse the stellar and hot gas content of 18 nearby, low-mass galaxy clusters, detected in redshift space and selected to have a dynamical mass 3E14<M/Msun<6E14, as measured from the 2dF Galaxy Redshift Survey. We combine X-ray measurements from both Chandra and XMM with ground-based near-infrared observations from CTIO, AAT and CFHT to compare the mass in hot gas and stars to the dynamical mass and state of the clusters. Only 13 of the clusters are detected in X-ray emission, and for these systems we find that a range of 7-20 per cent of their baryonic mass, and <3 per cent of their dynamical mass, is detected in starlight, similar to what is observed in more massive clusters. In contrast, the five undetected clusters are underluminous in X-ray emission, by up to a factor 10, given their stellar mass. Although the velocity distribution of cluster members in these systems is indistinguishable from a Gaussian, all show subtle signs of being unrelaxed: either they lack a central, dominant galaxy, or the bright galaxy distribution is less concentrated and/or more elongated than the rest of the sample. Thus we conclude that low-mass clusters and groups selected from the velocity distribution of their galaxies exhibit a dichotomy in their hot gas properties. Either they are detected in X-ray, in which case they generally lie on the usual scaling relations, or they are completely undetected in X-ray emission. The non-detections may be partly related to the apparently young dynamical state of the clusters, but it remains a distinct possibility that some of these systems are exceptionally devoid of hot emitting gas as the result of its expulsion or rarefaction.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا