ترغب بنشر مسار تعليمي؟ اضغط هنا

Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

71   0   0.0 ( 0 )
 نشر من قبل Armando di Matteo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above $5 cdot 10^{18}$ eV, i.e.~the region of the all-particle spectrum above the so-called ankle feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.



قيم البحث

اقرأ أيضاً

The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies $E>E_{th}=5.5times 10^{19}$ eV. These show a correlation with the distribution of nearby extragalactic obje cts, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at $E>E_{th}$ are heavy nuclei with charge $Z$, the proton component of the sources should lead to excesses in the same regions at energies $E/Z$. We here report the lack of anisotropies in these directions at energies above $E_{th}/Z$ (for illustrative values of $Z=6, 13, 26$). If the anisotropies above $E_{th}$ are due to nuclei with charge $Z$, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, $vec{d}_p erp$, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the ``East-West method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend the analysis down to $sim 0.03$ EeV. The most significant equatorial dipole amplitude obtained is that in the cumulative bin above 8~EeV, $d_perp=6.0^{+1.0}_{-0.9}$%, which is inconsistent with isotropy at the 6$sigma$ level. In the bins below 8 EeV, we obtain 99% CL upper-bounds on $d_perp$ at the level of 1 to 3 percent. At energies below 1 EeV, even though the amplitudes are not significant, the phases determined in most of the bins are not far from the right ascension of the Galactic center, at $alpha_{rm GC}=-94^circ$, suggesting a predominantly Galactic origin for anisotropies at these energies. The reconstructed dipole phases in the energy bins above 4 EeV point instead to right ascensions that are almost opposite to the Galactic center one, indicative of an extragalactic cosmic ray origin.
We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $Egeq 8$ EeV, the most significant signal is a dipolar modulation in r ight ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index $beta=0.79pm 0.19$. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Additionally we have estimated the quadrupolar components of the anisotropy: they are not statistically significant. We discuss the results in the context of the predictions from different models for the distribution of ultrahigh-energy sources and cosmic magnetic fields.
89 - Sofia Andringa 2019
The average profiles of cosmic ray shower development as a function of atmospheric depth are measured for the first time with the Fluorescence Detectors at the Pierre Auger Observatory. The profile shapes are well reproduced by the Gaisser-Hillas par ametrization at the 1% level in a 500 g/cm2 interval around the shower maximum, for cosmic rays with log(E/eV) > 17.8. The results are quantified with two shape parameters, measured as a function of energy. The average profiles carry information on the primary cosmic ray and its high energy hadronic interactions. The shape parameters predicted by the commonly used models are compatible with the measured ones within experimental uncertainties. Those uncertainties are dominated by systematics which, at present, prevent a detailed composition analysis.
92 - T.Yamamoto 2007
The Southern part of the Pierre Auger Observatory is nearing completion, and has been in stable operation since January 2004 while it has grown in size. The large sample of data collected so far has led to a significant improvement in the measurement of the energy spectrum of UHE cosmic rays over that previously reported by the Pierre Auger Observatory, both in statistics and in systematic uncertainties. We summarize two measurements of the energy spectrum, one based on the high-statistics surface detector data, and the other of the hybrid data, where the precision of the fluorescence measurements is enhanced by additional information from the surface array. The complementarity of the two approaches is emphasized and results are compared. Possible astrophysical implications of our measurements, and in particular the presence of spectral features, are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا