ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetotransport studies of Superconducting Pr$_4$Fe$_2$As$_2$Te$_{1-x}$O$_4$

375   0   0.0 ( 0 )
 نشر من قبل Balint Nafradi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed study of the electrical transport properties of single crystals of Pr$_4$Fe$_2$As$_2$Te$_{1-x}$O$_4$, a recently discovered iron-based superconductor. Resistivity, Hall effect and magnetoresistance are measured in a broad temperature range revealing the role of electrons as dominant charge carriers. The significant temperature dependence of the Hall coefficient and the violation of Kohlers law indicate multiband effects in this compound. The upper critical field and the magnetic anisotropy are investigated in fields up to 16 T, applied parallel and perpendicular to the crystallographic c-axis. Hydrostatic pressure up to 2 GPa linearly increases the critical temperature and the resistivity residual ratio. A simple two-band model is used to describe the transport and magnetic properties of Pr$_4$Fe$_2$As$_2$Te$_{1-x}$O$_4$. The model can successfully explain the strongly temperature dependent negative Hall coefficient and the high magnetic anisotropy assuming that the mobility of electrons is higher than that of holes.

قيم البحث

اقرأ أيضاً

We report magnetotransport measurements and its scaling analysis for the optimally electron doped Sr(Fe${_{0.88}}$Co${_{0.12}}$)${_2}$As${_2}$ system. We pbserve that both the Kohlers and modified Kohlers scalings are violated. Interestingly, the Hal l angle displays a quadratic temperature dependence similar to many cuprates and heavy fermion systems. The fact that this temperature dependence is seen in spite of the violation of modified Kohlers scaling suggests that the Hall angle and the magnetoresistance are not governed by the same scattering mechanism. We also observe a linear magnetoresistance in this system, which does not harbor a spin density wave ground state. Implcations of our observations are discussed in the context of spin fluctuations in strongly correlated electron systems.
117 - Zhi-Cheng Wang , Yi Liu , Si-Qi Wu 2018
CsCa$_2$Fe$_4$As$_4$F$_2$ is a newly discovered iron-based superconductor with $T_mathrm{c}sim$ 30 K containing double Fe$_2$As$_2$ layers that are separated by insulating Ca$_2$F$_2$ spacer layers. Here we report the transport and magnetization meas urements on CsCa$_2$Fe$_4$As$_4$F$_2$ single crystals grown for the first time using the self flux of CsAs. We observed a huge resistivity anisotropy $rho_c(T)/rho_{ab}(T)$, which increases with decreasing temperature, from 750 at 300 K to 3150 at 32 K. The $rho_c(T)$ data exhibit a non-metallic behavior above $sim$140 K, suggesting an incoherent electronic state at high temperatures due to the dimension crossover. The superconducting onset transition temperature in $rho_{ab}$ is 0.7 K higher than that in $rho_c$, suggesting two-dimensional (2D) superconducting fluctuations. The lower and upper critical fields also show an exceptional anisotropy among iron-based superconductors. The $H_{c1}^bot(T)$ data are well fitted using the model with two $s$-wave-like superconducting gaps, $Delta_1(0)=6.75$ meV and $Delta_2(0)=2.32$ meV. The inter-plane coherence length $xi_c(0)$ is $3.6$ AA, remarkably smaller than the distance between conducting layers (8.6 AA), consolidating the 2D nature in the title material.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31. 007(1) {AA}, and $Z$ = 2), which contains double Fe$_2$As$_2$ conducting layers separated by insulating Ca$_2$F$_2$ layers. Our measurements of electrical resistivity, dc magnetic susceptibility and heat capacity demonstrate bulk superconductivity at 33 K in KCa$_2$Fe$_4$As$_4$F$_2$.
211 - A Pisoni , S Katrych , P Szirmai 2016
We present a detailed study of the electrical transport properties of a recently discovered iron-based superconductor: Sm$_4$Fe$_2$As$_2$Te$_{0.72}$O$_{2.8}$F$_{1.2}$. We followed the temperature dependence of the upper critical field by resistivity measurement of single crystals in magnetic fields up to 16 T, oriented along the two main crystallographic directions. This material exhibits a zero-temperature upper critical field of 90 T and 65 T parallel and perpendicular to the Fe$_2$As$_2$ planes, respectively. An unprecedented superconducting magnetic anisotropy $gamma_H=H_{c2}^{ab}/H_{c2}^c sim 14$ is observed near Tc, and it decreases at lower temperatures as expected in multiband superconductors. Direct measurement of the electronic anisotropy was performed on microfabricated samples, showing a value of $rho_c/rho_{ab}(300K) sim 5$ that raises up to 19 near Tc. Finally, we have studied the pressure and temperature dependence of the in-plane resistivity. The critical temperature decreases linearly upon application of hydrostatic pressure (up to 2 GPa) similarly to overdoped cuprate superconductors. The resistivity shows saturation at high temperatures, suggesting that the material approaches the Mott-Ioffe-Regel limit for metallic conduction. Indeed, we have successfully modelled the resistivity in the normal state with a parallel resistor model that is widely accepted for this state. All the measured quantities suggest strong pressure dependence of the density of states.
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature dependence of the superfluid density does not have the expected behavior of a fully-gapped superconductor, due to the lack of saturation at low temperatures. Moreover, the data cannot be well fitted using either single band models or a multiband $s$-wave model, yet are well described by two-gap models with line nodes on either one or both of the gaps. Meanwhile the zero-field $mu$SR results indicate a lack of time reversal symmetry breaking in the superconducting state, but suggest the presence of magnetic fluctuations. These results demonstrate a different route for realizing nodal superconductivity in iron-based superconductors. Here the gap structure is drastically altered upon replacing one of the spacer layers, indicating the need to understand how the pairing state is tuned by changes of the asymmetry between the pnictogens located either side of the Fe planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا