ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of a full chain analysis using neutron monitor data for space weather studies

43   0   0.0 ( 0 )
 نشر من قبل Alexander Mishev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An important topic in the field of space weather is the precise assessment of the contribution of galactic cosmic rays and solar energetic particles on air crew exposure, specifically during eruptive events on the Sun. Here we present a model, a full chain analysis based on ground based measurements of cosmic rays with neutron monitors, subsequent derivation of particle spectral and angular characteristics and computation of dose rate. The model uses method for ground level enhancement analysis and newly numerically computed yield functions for conversion of secondary particle fluence to effective dose and/or the ambient dose equivalent. The precise an adequate information about the solar energetic particle spectra (SEPs) is the basis of the model. Since SEPs possess an essential isotropic part, specifically during the event onset, the angular characteristics should be also derived with good precision. This can be achieved using neutron monitor data during a special class of SEP events the ground level enhancements (GLEs). On the basis of the method representing a sequence of consecutive steps: computation of the NM asymptotic cones, NM rigidity cut-off and application of convenient optimization procedure, we derive the rigidity spectra and anisotropy characteristics of GLE particles. For the computation we use newly computed yield function of the standard sea-level 6NM64 neutron monitor for primary proton and alpha CR nuclei as well as 6NM64 yield function at altitudes ranging from the sea level up to 5000 m above the sea level. We derive the SEP spectra and pitch angle distributions in their dynamical development throughout the event. Subsequently on the basis of the derived spectra and angular characteristics and previously computed yield functions we calculate the effective dose and/or ambient dose equivalent during the GLE. Several examples are shown.

قيم البحث

اقرأ أيضاً

Flare Likelihood and Region Eruption Forecasting (FLARECAST) is a Horizon 2020 project, which realized a technological platform for machine learning algorithms, with the objective of providing the space weather community with a prediction service for solar flares. This paper describes the FLARECAST service and shows how the methods implemented in the platform allow both flare prediction and a quantitative assessment of how the information contained in the space data utilized in the analysis may impact the forecasting process.
The Sun is an active star that can have a direct impact on the Earth, its magnetosphere, and the technological infrastructure on which modern society depends. Among the phenomena that drive space weather are fast solar wind streams and co-rotating in teraction regions, solar flares, coronal mass ejections, the shocks they produce, and the energetic particles they accelerate. Radio emission from these and associated phenomena offer unique diagnostic possibilities that complement those available at other wavelengths. Here, the relevant space weather drivers are briefly described, the potential role of radio observations is outlined, and the requirements of an instrument to provide them are provided: specifically, ultrabroadband imaging spectropolarimetry. The insights provided by radio observations of space weather drivers will not only inform the science of space weather, they will pave the way for new tools for forecasting and nowcasting space weather. They will also serve as an important touchstone against which local environment of exoplanets and the impact of exo-space weather can be evaluated.
In this article, we insist on the importance and the challenges of the prediction of solar eruptive phenomena including flares, coronal mass ejections (CME), and filament eruptions fully based on the ground-based telescopes. It is true that satellite s data are indispensable for the space weather prediction, but they are vulnerable to the space weather effects. Therefore, the ground-based telescopes can be complementary to them from the viewpoint of space weather prediction. From this view point, one possible new flare prediction method that makes use of H-alpha, red wings, and blue wings images obtained by the SDDI/SMART, the ground-based telescope at Hida Observatory, is presented. And in order to show the possibility for the actual operation based on that method, the recent progress of CHAIN project, the international observation network, is mentioned in terms of their outcomes and capacity buildings.
We describe the performance of a $mathrm{23times 23times30 ~mm^3}$ low background cerium bromide, CeBr$_3$(LB), scintillator crystal coupled to a Hamamatsu R11265U-200 photomultiplier. This detector will be the building block for a gamma-ray detector array designed to be the payload for a CubeSat to be launched in 2020. The aim of the mission is to study flashes of gamma rays of terrestrial origin. The design of the detector has been tuned for the detection of gamma rays in the 20 keV$-$3 MeV energy range.
Solar activity, ranging from the background solar wind to energetic coronal mass ejections (CMEs), is the main driver of the conditions in the interplanetary space and in the terrestrial space environment, known as space weather. A better understandi ng of the Sun-Earth connection carries enormous potential to mitigate negative space weather effects with economic and social benefits. Effective space weather forecasting relies on data and models. In this paper, we discuss some of the most used space weather models, and propose suitable locations for data gathering with space weather purposes. We report on the application of textit{Representer analysis (RA)} and textit{Domain of Influence (DOI) analysis} to three models simulating different stages of the Sun-Earth connection: the OpenGGCM and Tsyganenko models, focusing on solar wind - magnetosphere interaction, and the PLUTO model, used to simulate CME propagation in interplanetary space. Our analysis is promising for space weather purposes for several reasons. First, we obtain quantitative information about the most useful locations of observation points, such as solar wind monitors. For example, we find that the absolute values of the DOI are extremely low in the magnetospheric plasma sheet. Since knowledge of that particular sub-system is crucial for space weather, enhanced monitoring of the region would be most beneficial. Second, we are able to better characterize the models. Although the current analysis focuses on spatial rather than temporal correlations, we find that time-independent models are less useful for Data Assimilation activities than time-dependent models. Third, we take the first steps towards the ambitious goal of identifying the most relevant heliospheric parameters for modelling CME propagation in the heliosphere, their arrival time, and their geoeffectiveness at Earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا