ترغب بنشر مسار تعليمي؟ اضغط هنا

(sub)Millimeter Emission Lines of Molecules in Born-again Stars

72   0   0.0 ( 0 )
 نشر من قبل Daniel Tafoya
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection and study of molecular gas in born-again stars would be of great importance to understand their composition and chemical evolution. In addition, the molecular emission would be an invaluable tool to explore the physical conditions, kinematics and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. We carried out observations using the APEX and IRAM 30m telescopes to search for molecular emission toward four well studied born-again stars, V4334 Sgr, V605 Aql, A30 and A78, that are thought to represent an evolutionary sequence. We detected for the first time emission from HCN and H$^{13}$CN molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. A first estimate of the H$^{12}$CN/H$^{13}$CN abundance ratio in the circumstellar environment of V4334 Sgr is $approx$3, which is similar to the value of the $^{12}$C/$^{13}$C ratio measured from other observations. We derived a rotational temperature of $T_{rm rot}$=13$pm1$ K, and a total column density of $N_{{rm HCN}}$=1.6$pm0.1times$10$^{16}$ cm$^{-2}$ for V4334 Sgr. This result sets a lower limit on the amount of hydrogen that was ejected into the wind during the born-again event of this source. For V605 Aql, we obtained a lower limit for the integrated line intensities $I_{^{12}rm C}$/$I_{^{13}rm C}$>4.

قيم البحث

اقرأ أيضاً

We have acquired sub-millimeter observations of 33 fields containing 37 Herbig Ae/Be (HAEBE) stars or potential HAEBE stars, including SCUBA maps of all but two of these stars. Nine target stars show extended dust emission. The other 18 are unresolve d, suggesting that the dust envelopes or disks around these stars are less than a few arcseconds in angular size. In several cases we find that the strongest sub-millimeter emission originates from younger, heavily embedded sources rather than from the HAEBE star, which means that previous models must be viewed with caution. These new data, in combination with far-infrared flux measurements available in the literature, yield SEDs from far-infrared to millimeter wavelengths for all the observed objects. Isothermal fits to these SEDs demonstrate excellent fits, in most cases, to the flux densities longward of 100 {mu}m. We find that a smaller proportion of B-type stars than A and F-type stars are surrounded by circumstellar disks, suggesting that disks around B stars dissipate on shorter time scales than those around later spectral types. Our models also reveal that the mass of the circumstellar material and the value of beta are correlated, with low masses corresponding to low values of beta. Since low values of beta imply large grain sizes, our results suggest that a large fraction of the mass in low-beta sources is locked up in very large grains. Several of the isolated HAEBE stars have disks with very flat sub-millimeter SEDs. These disks may be on the verge of forming planetary systems.
We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate t he formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of $sim$300 km s$^{-1}$, the age of this structure is consistent with that of $simeq$200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.
We present the analysis of infrared (IR) observations of the planetary nebula NGC 40 together with spectral analysis of its [WC]-type central star HD 826. Spitzer IRS observations were used to produce spectral maps centred at polycyclic aromatic hydr ocarbons (PAH) bands and ionic transitions to compare their spatial distribution. The ionic lines show a clumpy distribution of material around the main cavity of NGC 40, with the emission from [Ar II] being the most extended, whilst the PAHs show a rather smooth spatial distribution. Analysis of ratio maps shows the presence of a toroidal structure mainly seen in PAH emission, but also detected in a Herschel PACS 70 mic image. We argue that the toroidal structure absorbs the UV flux from HD 826, preventing the nebula to exhibit lines of high-excitation levels as suggested by previous authors. We discuss the origin of this structure and the results from the spectral analysis of HD 826 under the scenario of a late thermal pulse.
We report the discovery of a handful of optical hydrogen-poor knots in the central part of an extended infrared nebula centred on the [WO1] star WR 72, obtained by spectroscopic and imaging observations with the Southern African Large Telescope (SALT ). Wide-field Infrared Survey Explorer (WISE) images of the nebula show that it is composed of an extended almost circular halo (of $approx6$ arcmin or $approx2.4$ pc in diameter) and an elongated and apparently bipolar inner shell (of a factor of six smaller size), within which the knots are concentrated. Our findings indicate that WR 72 is a new member of the rare group of hydrogen-poor planetary nebulae, which may be explained through a very late thermal pulse of a post-AGB star, or by a merger of two white dwarfs.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا