ﻻ يوجد ملخص باللغة العربية
Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly complementary, no attempt has ever been made to combine them, perhaps due to the different modeling approaches that are typically used in their interpretation. Here we present the first combined analysis of previously-published dayside spectra of the exoplanet HD 209458b obtained at low resolution with HST/WFC3 and Spitzer/IRAC, and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical composition of the planets atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9 sigma from the expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances of CO and H2O strongly favor an oxygen-rich atmosphere (C/O<1 at 3.5 sigma) for the planet when compared to equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this study we constrain the planet metallicity to 0.1-1.0x the stellar value (1 sigma). This study opens the way to coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be crucial for characterizing potentially-habitable planets.
Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage, a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit
Observations to characterize planets larger than Earth but smaller than Neptune have led to largely inconclusive interpretations at low spectral resolution due to hazes or clouds that obscure molecular features in their spectra. However, here we show
The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes -- such as ESPRESSO@VLT and HIRES@ELT -- will all
We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are se
The technique of transmission spectroscopy allows us to constrain the chemical composition of the atmospheres of transiting exoplanets. It relies on very high signal-to-noise spectroscopic (or spectrophotometric) observations and is thus most suited