ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconvergence of Very Large Scale GI Simulations

165   0   0.0 ( 0 )
 نشر من قبل Natsuki Hosono Ph.D.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The giant impact (GI) is one of the most important hypotheses both in planetary science and geoscience, since it is related to the origin of the Moon and also the initial condition of the Earth. A number of numerical simulations have been done using the smoothed particle hydrodynamics (SPH) method. However, GI hypothesis is currently in a crisis. The canonical GI scenario failed to explain the identical isotope ratio between the Earth and the Moon. On the other hand, little has been known about the reliability of the result of GI simulations. In this paper, we discuss the effect of the resolution on the results of the GI simulations by varying the number of particles from $3 times10^3$ to $10^8$. We found that the results does not converge, but shows oscillatory behaviour. We discuss the origin of this oscillatory behaviour.


قيم البحث

اقرأ أيضاً

We discuss the feasibility of and present initial designs and approximate cost estimates for a large ($Nsim2000$) network of small photometric telescopes that is purpose-built to monitor $V lesssim 15$ Gaia Mission program stars for occultations by m inor solar system bodies. The implementation of this network would permit measurement of the solar systems tidal gravity field to high precision, thereby revealing the existence of distant trans-Neptunian objects such as the proposed Planet Nine. As a detailed example of the network capabilities, we investigate how occultations by Jovian Trojans can be monitored to track the accumulation of gravitational perturbations, thereby constraining the presence of undetected massive solar system bodies. We also show that the tidal influence of Planet Nine can be discerned from that of smaller, nearer objects in the Kuiper belt. Moreover, ephemerides for all small solar system bodies observed in occultation could be significantly improved using this network, thereby improving spacecraft navigation and refining Solar System modeling. Finally, occultation monitoring would generate direct measurements of size distributions for asteroid populations, permitting a better understanding of their origins.
To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computatio nal cost. Therefore, approximate but fast simulations, surrogates, are widely used to gain speed at the price of introducing model error. We propose a general method that exploits the correlation between simulations and surrogates to compute fast, reduced-variance statistics of large-scale structure observables without model error at the cost of only a few simulations. We call this approach Convergence Acceleration by Regression and Pooling (CARPool). In numerical experiments with intentionally minimal tuning, we apply CARPool to a handful of GADGET-III $N$-body simulations paired with surrogates computed using COmoving Lagrangian Acceleration (COLA). We find $sim 100$-fold variance reduction even in the non-linear regime, up to $k_mathrm{max} approx 1.2$ $h {rm Mpc^{-1}}$ for the matter power spectrum. CARPool realises similar improvements for the matter bispectrum. In the nearly linear regime CARPool attains far larger sample variance reductions. By comparing to the 15,000 simulations from the Quijote suite, we verify that the CARPool estimates are unbiased, as guaranteed by construction, even though the surrogate misses the simulation truth by up to $60%$ at high $k$. Furthermore, even with a fully configuration-space statistic like the non-linear matter density probability density function, CARPool achieves unbiased variance reduction factors of up to $sim 10$, without any further tuning. Conversely, CARPool can be used to remove model error from ensembles of fast surrogates by combining them with a few high-accuracy simulations.
Constraining neutrino mass remains an elusive challenge in modern physics. Precision measurements are expected from several upcoming cosmological probes of large-scale structure. Achieving this goal relies on an equal level of precision from theoreti cal predictions of neutrino clustering. Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem. We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run, named TianNu, which uses 86% of the machine (13,824 compute nodes). With a total of 2.97 trillion particles, TianNu is currently the worlds largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale. We finish with a discussion of the unanticipated computational challenges that were encountered during the TianNu runtime.
Exoplanets form in protoplanetary accretion discs. The total protoplanetary disc mass is the most fundamental parameter, since it sets the mass budget for planet formation. Although observations with the Atacama Large Millimeter/Submillimeter array ( ALMA) have dramatically increased our understanding of these discs, total protoplanetary disc mass remains difficult to measure. If a disc is sufficiency massive ($gtrsim$ 10% of the host star mass), it can excite gravitational instability (GI). Recently, it has been revealed that GI leaves kinematic imprints of its presence known as the ``GI Wiggle. In this work, we use numerical simulations to empirically determine an approximately linear relationship between the amplitude of the wiggle and the host disc-to-star mass ratio, and show that measurements of the amplitude are possible with the spatial and spectral capabilities of ALMA. These measurements can therefore be used to constrain disc-to-star mass ratio.
We present an efficient method to generate large simulations of the Epoch of Reionization (EoR) without the need for a full 3-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21cm emission from neutral hydrogen. Dark matter haloes are embedded with sources of radiation whose properties are either based on semi-analytical prescriptions or derived from hydrodynamical simulations. These sources could either be stars or power-law sources with varying spectral indices. Assuming spherical symmetry, ionized bubbles are created around these sources, whose radial ionized fraction and temperature profiles are derived from a catalogue of 1-D radiative transfer experiments. In case of overlap of these spheres, photons are conserved by redistributing them around the connected ionized regions corresponding to the spheres. The efficiency with which these maps are created allows us to span the large parameter space typically encountered in reionization simulations. We compare our results with other, more accurate, 3-D radiative transfer simulations and find excellent agreement for the redshifts and the spatial scales of interest to upcoming 21cm experiments. We generate a contiguous observational cube spanning redshift 6 to 12 and use these simulations to study the differences in the reionization histories between stars and quasars. Finally, the signal is convolved with the LOFAR beam response and its effects are analyzed and quantified. Statistics performed on this mock data set shed light on possible observational strategies for LOFAR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا