ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

77   0   0.0 ( 0 )
 نشر من قبل Peter von Neumann-Cosel
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف L.M. Donaldson




اسأل ChatGPT حول البحث

Proton inelastic scattering experiments at energy E_p = 200 MeV and a spectrometer scattering angle of 0 degree were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour can be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data

قيم البحث

اقرأ أيضاً

A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.
By using the 1H(6Li,6Be)n charge-exchange reaction, continuum states in 6Be were populated up to E_t=16 MeV, E_t being the 6Be energy above its three-body decay threshold. In kinematically complete measurements performed by detecting alpha+p+p coinci dences, an E_t spectrum of high statistics was obtained, containing approximately ~5x10^6 events. The spectrum provides detailed correlation information about the well-known 0^+ ground state of 6Be at E_t=1.37 MeV and its 2^+ state at E_t=3.05 MeV. Moreover, a broad structure extending from 4 to 16 MeV was observed. It contains negative parity states populated by Delta L=1 angular momentum transfer without other significant contributions. This structure can be interpreted as a novel phenomenon, i.e. the isovector soft dipole mode associated with the 6Li ground state. The population of this mode in the charge-exchange reaction is a dominant phenomenon for this reaction, being responsible for about 60% of the cross section obtained in the measured energy range.
Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward angles including $0^circ$ has been established as a tool to study electric-dipole strength distributions in nuclei. The present work reports a systematic invest igation of the chain of stable even-mass Nd isotopes representing a transition from spherical to quadrupole-deformed nuclei. Purpose: Extraction of the equivalent photo-absorption cross sections and analysis of their fine structure in the energy region of the IsoVector Giant Dipole Resonance (IVGDR). Method: Proton inelastic scattering reactions of 200 MeV protons were measured at iThemba LABS in Cape Town, South Africa. The scattering products were momentum-analysed by the K600 magnetic spectrometer positioned at $theta_{mathrm{Lab}}=0^circ$. Using dispersion-matching techniques, energy resolutions of $Delta E approx 40 - 50$ keV were obtained. After subtraction of background and contributions from other multipoles, the spectra were converted to photo-absorption cross sections using the equivalent virtual-photon method. Results: Wavelet-analysis techniques are used to extract characteristic energy scales of the fine structure of the IVGDR from the experimental data. Comparisons with the Quasiparticle-Phonon Model (QPM) and Skyrme Separable Random Phase Approximation (SSRPA) predictions provide insight into the role of different giant resonance damping mechanisms. Conclusions: Fine structure is observed even for the most deformed nuclei studied. Fragmentation of the one particle-one hole ($1p1h$) strength seems to be the main source of fine structure in both spherical and deformed nuclei. Some impact of the spreading due to coupling of the two particle-two hole ($2p2h$) states to the $1p1h$ doorway states is seen in the spherical/transitional nuclei, where calculations beyond the $1p1h$ level are available.
421 - T. Trivedi , R. Palit , J. Sethi 2012
High spin states in $^{112}$In were investigated using $^{100}$Mo($^{16}$O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin $sim$ 20$hbar$ with the level scheme showing three dipole bands. The po larization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.
The $^{208}$Pb($p$,$ngammabar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $gamma$-decay to the isobaric analog state in coincidence with proton dec ay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness ($Delta R_{pn}$). By comparing the theoretical results with the measured transition energy, the value of 0.190 $pm$ 0.028 fm has been determined for $Delta R_{pn}$ of $^{208}$Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation ($J=32.7 pm 0.6$ MeV) and the slope of the symmetry energy ($L=49.7 pm 4.4$ MeV), resulting in more stringent constraints than most of the previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا