ترغب بنشر مسار تعليمي؟ اضغط هنا

The cataclysmic variable AE Aquarii: B-V colour of the flares

84   0   0.0 ( 0 )
 نشر من قبل Radoslav K. Zamanov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report simultaneous observations of the flaring behaviour of the cataclysmic variable star AE Aqr. The observations are in Johnson B and V bands. The colour-magnitude diagrams (B-V versus V and B-V vs. B) show that the star becomes blues as it becomes brighter. In our model AE Aqr behaviour can be explained with flares (fireballs) with 0.03 < B-V < 0.30 and temperature in the interval 8000 < T < 12000.

قيم البحث

اقرأ أيضاً

We report simultaneous multicolour observations in 5 bands (UBVRI) of the flickering variability of the cataclysmic variable AE Aqr. Our aim is to estimate the parameters (colours, temperature, size) of the fireballs that produce the optical flares. The observed rise time of the optical flares is in the interval 220 - 440 sec. We estimate the dereddened colours of the fireballs: (U-B)_0 in the range 0.8-1.4, (B-V)_0 ~ 0.03-0.24, (V-I)_0 ~ 0.26-0.78. We find for the fireballs a temperature in the range 10000 - 25000 K, mass (7-90).10^{19} g, size (3-7).10^9 cm (using a distance of d=86 pc). These values refer to the peak of the flares observed in UBVRI bands. The data are available upon request from the authors.
We have developed a numerical MHD model of the propeller candidate star AE Aqr using axisymmetric magneto-hydrodynamic (MHD) simulations. We suggest that AE Aqr is an intermediate polar-type star, where the magnetic field is relatively weak and an ac cretion disc may form around the white dwarf. The star is in the propeller regime, and many of its observational properties are determined by the disc-magnetosphere interaction. Comparisons of the characteristics of the observed versus modelled AE Aqr star show that the model can explain many observational properties of AE Aqr. In a representative model, the magnetic field of the star is Bapprox 3.3x10^5 G and the time averaged accretion rate in the disc is 5.5times 10^{16} g/s. Most of this matter is ejected into conically-shaped winds. The numerical model explains the rapid spin-down of AE Aqr through the outflow of angular momentum from the surface of the star to the wind, corona and disc. The energy budget in the outflows, 9x10^{33} erg/s, is sufficient for explaining the observed flaring radiation in different wavebands. The time scale of ejections into the wind matches the short time scale variability in the light curves of AE Aqr.
AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P_spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L_X ~ 10^{31} erg/s). We have ana lyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in September of 2012. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75 +0.18 -0.45, 2.29 +0.96 -0.82, and 9.33 +6.07 -2.18 keV, or an optically thin thermal plasma model with two temperatures of 1.00 +0.34 -0.23 and 4.64 +1.58 -0.84 keV plus a power-law component with photon index of 2.50 +0.17 -0.23. The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6 +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.
We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad eclipses recur with a 2.46 hour period, which increases on a timescale of 1.28(16)x10^6 years. Under the assumption of conservative mass -transfer, this suggests a rate near 10^-7 M_sol/year, and this agrees with the estimated /accretion/ rate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves which suggest strong heating of the low-mass secondary, and very wide orbital minima which suggest obscuration of a large corona around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova -- and cataclysmic-variable -- evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.
136 - G. Subebekova 2020
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in nova-like systems is related to the bi-conical wind from the accretion discs inner part. However, we found that the Halpha emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader components source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period nova-like systems -- a point we discuss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا