ترغب بنشر مسار تعليمي؟ اضغط هنا

Monogamy relation in multipartite continuous-variable quantum teleportation

84   0   0.0 ( 0 )
 نشر من قبل Jaehak Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded as an operational measure of entanglement. In the case of multipartite communication when each communicator possesses a part of $N$-partite entangled state, not all pairs of communicators can achieve a high fidelity due to monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises in multipartite continuous-variable (CV) teleportation particularly using a Gaussian entangled state. We show a strict monogamy relation, i.e. a sender cannot achieve a fidelity higher than optimal cloning limit with more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more than one pair of communicators. Furthermore we investigate a quantitative form of monogamy relation in terms of teleportation capability, for which we show that a faithful monogamy inequality does not exist.



قيم البحث

اقرأ أيضاً

A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
We study a continuous variable (CV) dense-coding protocol, originally proposed to employ a two-mode squeezed state, using a general two-mode Gaussian state as a quantum channel. We particularly obtain conditions to manifest quantum advantage by beati ng two well-known single-mode schemes, namely, the squeezed-state scheme (best Gaussian scheme) and the number-state scheme (optimal scheme achieving the Holevo bound). We then extend our study to a multipartite Gaussian state and investigate the monogamy of operational entanglement measured by the communication capacity under the dense-coding protocol. We show that this operational entanglement represents a strict monogamy relation, by means of Heisenbergs uncertainty principle among different parties, i.e., the quantum advantage for communication can be possible for only one pair of two-mode systems among many parties.
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum and the, suitably measured, amount of non-Gaussianity.
We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, essentially unit fidelity is achieved at realistic, finite values of the squeezing amplitude for a sufficiently large degree of the channel non-Markovianity.
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the cl assical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا