ﻻ يوجد ملخص باللغة العربية
We give a completely constructive solution to Tarskis circle squaring problem. More generally, we prove a Borel version of an equidecomposition theorem due to Laczkovich. If $k geq 1$ and $A, B subseteq mathbb{R}^k$ are bounded Borel sets with the same positive Lebesgue measure whose boundaries have upper Minkowski dimension less than $k$, then $A$ and $B$ are equidecomposable by translations using Borel pieces. This answers a question of Wagon. Our proof uses ideas from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types of witnesses to the hyperfiniteness of free Borel actions of $mathbb{Z}^d$.
Laczkovich proved that if bounded subsets $A$ and $B$ of $R^k$ have the same non-zero Lebesgue measure and the box dimension of the boundary of each set is less than $k$, then there is a partition of $A$ into finitely many parts that can be translate
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of action
We investigate interactions between Ramsey theory, topological dynamics, and model theory. We introduce various Ramsey-like properties for first order theories and characterize them in terms of the appropriate dynamical properties of the theories in
We develop general machinery to cast the class of potential canonical Scott sentences of an infinitary sentence $Phi$ as a class of structures in a related language. From this, we show that $Phi$ has a Borel complete expansion if and only if $S_infty
We show that a locally finite Borel graph is nonsmooth if and only if it admits marker sequences which are far from every point. Our proof uses the Galvin-Prikry theorem and the Glimm-Effros dichotomy.