ﻻ يوجد ملخص باللغة العربية
Al4SiC4 is a wide band gap semiconductor with numerous potential technological applications. We report here the first thorough experimental Raman and Infrared (IR) investigation of vibrational properties of Al4SiC4 single crystals grown by high temperature solution growth method. The experimental results are compared with the full theoretical analysis of vibrational properties based on Density Functional Theory calculations that are revisited here. We have obtained a good agreement between the experimental and calculated Raman phonon modes and this allowed the symmetry assignment of all the measured Raman modes. We have revisited the DFT calculation of the IR active phonon modes and our results for LO-TO splitting indicate a substantial decrease of the variation of omega(LO-TO) compared with the previous reported calculation. Moreover, most of the IR modes have been symmetry assigned from the comparison of the experimental IR spectra with the corresponding Raman spectra and the Al4SiC4 calculated phonon modes.
Iron complexes with a suitable ligand field undergo spin-crossover (SCO), which can be induced reversibly by temperature, pressure or even light. Therefore, these compounds are highly interesting candidates for optical information storage, for displa
We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab initio techniques. These relations have been used to evaluate the temperature dependence of the respective specific heats of crystals with varied isotopic compositions. Thes
Density functional theory (DFT) calculations are used to investigate the electronic and magnetic structures of a two-dimensional (2D) monolayer Li$_{2}$N. It is shown that bulk Li$_{3}$N is a non-magnetic semiconductor. The non-spinpolarized DFT calc
By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic fcc solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the
Using density functional theory calculations, the ground state structure of BaFeO$_3$ (BFO) is investigated with local spin density approximation (LSDA). Cubic, tetragonal, orthorhombic, and rhombohedral types BFO are considered to calculate the form