ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnons and Magnetodielectric Effects in CoCr$_2$O$_4$: Raman Scattering Studies

112   0   0.0 ( 0 )
 نشر من قبل Astha Sethi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetoelectric materials have generated wide technological and scientific interest because of the rich phenomena these materials exhibit, including the coexistence of magnetic and ferroelectric orders, magnetodielectric behavior, and exotic hybrid excitations such as electromagnons. The multiferroic spinel material, CoCr$_2$O$_4$, is a particularly interesting example of a multiferroic material, because evidence for magnetoelectric behavior in the ferrimagnetic phase seems to conflict with traditional noncollinear-spin-driven mechanisms for inducing a macroscopic polarization. This paper reports an inelastic light scattering study of the magnon and phonon spectrum of CoCr$_2$O$_4$ as simultaneous functions of temperature, pressure, and magnetic field. Below the Curie temperature ($T_C sim 94$ K) of CoCr$_2$O$_4$ we observe a $omega sim 16 ,text{cm}^{-1}$ $boldsymbol q=0$ magnon having T$_{1g}$-symmetry, which has the transformation properties of an axial vector. The anomalously large Raman intensity of the T$_{1g}$-symmetry magnon is characteristic of materials with a large magneto-optical response and likely arises from large magnetic fluctuations that strongly modulate the dielectric response in CoCr$_2$O$_4$. The Raman susceptibility of the T$_{1g}$-symmetry magnon exhibits a strong magnetic-field dependence that is consistent with the magnetodielectric response observed in CoCr$_2$O$_4$, suggesting that magnetodielectric behavior in CoCr$_2$O$_4$ primarily arises from the field-dependent suppression of magnetic fluctuations that are strongly coupled to long-wavelength phonons. Increasing the magnetic anisotropy in CoCr$_2$O$_4$ with applied pressure decreases the magnetic field-dependence of the T$_{1g}$-symmetry magnon Raman susceptibility in CoCr$_2$O$_4$, suggesting that strain can be used to control the magnetodielectric response in CoCr$_2$O$_4$.



قيم البحث

اقرأ أيضاً

We report on an investigation of optical properties of multiferroic CoCr$_{2}$O$_{4}$ at terahertz frequencies in magnetic fields up to 30 T. Below the ferrimagnetic transition (94 K), the terahertz response of CoCr$_{2}$O$_{4}$ is dominated by a mag non mode, which shows a steep magnetic-field dependence. We ascribe this mode to an exchange resonance between two magnetic sublattices with different $g$-factors. In the framework of a simple two-sublattice model (the sublattices are formed by Co$^{2+}$ and Cr$^{3+}$ ions), we find the inter-sublattice coupling constant, $lambda = - (18 pm 1)$ K, and trace the magnetization for each sublattice as a function of field. We show that the Curie temperature of the Cr$^{3+}$ sublattice, $Theta_{2}$ = $(49 pm 2)$ K, coincides with the temperature range, where anomalies of the dielectric and magnetic properties of CoCr$_{2}$O$_{4}$ have been reported in literature.
We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice anisotropies, for e.g., in a cubic material, and this explains the occurrence of such a state in CoCr$_2$O$_4$. We discuss the case when this ord er coexists with ferromagnetism in a so called `conical cycloid state, and show that a direct transition to this state from the ferromagnet is necessarily first order. On quite general grounds, the reversal of the direction of the uniform magnetization in this state can lead to the reversal of the electric polarization as well, without the need to invoke `toroidal moment as the order parameter.
The strong coupling between spin, lattice and electronic degrees of freedom in magnetic materials can produce interesting phenomena, including multiferroic and magnetodielectric (MD) behavior, and exotic coupled excitations, such as electromagnons. W e present a temperature- and magnetic-field-dependent inelastic light (Raman) scattering study that reveals the emergence of vibronic modes, i.e., coupled vibrational and crystal-electric-field (CEF) electronic excitations, in the unconventional rare-earth MD material, $text{Ce}_2text{O}_3$. The energies and intensities of these emergent vibronic modes are indicative of enhanced vibronic coupling and increased modulation of the dielectric susceptibility in the Neel state ($T_text{N} approx 6.2,text{K}$). The field-dependences of the energies and intensities of these vibronic modes are consistent with a decrease of both the vibronic coupling and the dielectric fluctuations associated with these modes below $T_text{N}$. These results suggest a distinctive mechanism for MD behavior in $text{Ce}_2text{O}_3$ that is associated with a field-tunable coupling between CEF and phonon states.
258 - N Ortiz Hernandez 2020
We report a soft x-ray resonant magnetic scattering study of the spin configuration in multiferroic thin films of Co$_{0.975}$Ge$_{0.025}$Cr$_2$O$_4$ (Ge-CCO) and CoCr$_2$O$_4$ (CCO), under low- and high-magnetic fields, from 0.2 T up to 6.5 T. A cha racterization of Ge-CCO at a low magnetic field is performed and the results are compared to those of pure CCO. The ferrimagnetic phase transition temperature $T_C approx 95$ K and the multiferroic transition temperature $T_S approx 27$ K in Ge-CCO are comparable to those observed in CCO. In Ge-CCO, the ordering wave vector $textit{(qq0)}$ observed below $T_S$ is slightly larger compared to that of CCO, and, unlike CCO, the diffraction intensity consists of two contributions that show a dissimilar x-ray polarization dependence. In Ge-CCO, the coercive field observed at low temperatures was larger than the one reported for CCO. In both compounds, an unexpected reversal of the spiral helicity and therefore the electric polarization was observed on simply magnetic field cooling. In addition, we find a change in the helicity as a function of momentum transfer in the magnetic diffraction peak of Ge-CCO, indicative of the presence of multiple magnetic spirals.
Excitation of four coherent phonon modes of different symmetries has been realized in copper metaborate CuB$_2$O$_4$ via impulsive stimulated Raman scattering (ISRS). Phonons were detected by monitoring changes in the linear optical birefringence usi ng the balanced-detection (BD) technique. We compare the results of BD-ISRS experiment to the polarized spontaneous Raman scattering spectra. We show that the agreement between the two sets of data obtained by these allied techniques in a wide phonon frequencies range of 4-14 THz can be achieved by rigorously taking into account the symmetry of the phonon modes, and the corresponding excitation and detection selection rules. It is also important to account for the difference between incoherent and coherent phonons in terms of their contributions to the Raman scattering process. This comparative analysis highlights the importance of the ratio between the frequency of a particular mode, and the pump and probe spectral widths. We demonstrate analytically that the pump and probe pulse durations of 90 and 50 fs, respectively, used in our experiments, limit the highest frequency of the excited and detected coherent phonon modes to 12 THz, and define their relative amplitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا