ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength variability study and search for periodicity of PKS 1510-089

142   0   0.0 ( 0 )
 نشر من قبل Gianluca Castignani
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are the most luminous and variable AGNs, and thus excellent probes of accretion and emission processes close to the central engine. We focus on PKS 1510-089 ($z=0.36$), one of the brightest gamma-ray sources in the Fermi LAT catalog, to study its complex multi-wavelength variability. PKS 1510-089 was observed twice in hard X-rays with the IBIS instrument onboard INTEGRAL during the flares of Jan 2009 and Jan 2010, and simultaneously with Swift and NOT, in addition to the constant Fermi monitoring. The optical polarization was measured in several bands on 18 Jan 2010 at the NOT. Using our and archival data we constructed historical light curves at gamma-to-radio wavelengths covering nearly 20 years and applied variability tests. We assembled SEDs in 2009 and 2010 and compared them with those at two previous epochs and with a model based on synchrotron and inverse Compton (IC) radiation. The SED modeling suggests that the physical quantities that undergo the largest variations are the total power injected into the emitting region and the random Lorentz factor of the electron distribution cooling break, that are higher in the higher gamma-ray states. This suggests a correlation of the injected power with enhanced activity of the acceleration mechanism. The cooling likely takes place at a much smaller distance ($sim$0.03 pc) than the BLR radius. The emission at a few hundred GeV can be reproduced with IC scattering of highly relativistic electrons off FIR photons at $sim$0.2 pc, presumably in a dusty torus. DCF analysis between the long-term optical and gamma-ray light curves yields a good correlation with no measurable delay. Our time analysis of the RXTE PCA and Fermi LAT light curves reveals no obvious (quasi-)periodicities, up to the maximum time scale (a few years) probed by the light curves, which are severely affected by red noise.

قيم البحث

اقرأ أيضاً

Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ra y state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a long high gamma-ray state in May 2015. In order to perform broadband modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, due to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
The blazar PKS 1510-089 was the first of the flat spectrum radio quasar type, which had been detected simultaneously by a ground based Cherenkov telescope (H.E.S.S.) and the LAT instrument on board the Fermi satellite. Given the strong broad line reg ion emission defining this blazar class, and the resulting high optical depth for VHE ($E>100,$GeV) $gamma$-rays, it was surprising to detect VHE emission from such an object. In May 2015, PKS 1510-089 exhibited high states throughout the electromagnetic spectrum. Target of Opportunity observations with the H.E.S.S. experiment revealed strong and unprecedented variability of this source. Comparison with the lightcurves obtained with the textit{Fermi}-LAT in HE $gamma$-rays ($100,$MeV$<E<100,$GeV) and ATOM in the optical band shows a complex relationship between these energy bands. This points to a complex structure of the emission region, since the one-zone model has difficulties to reproduce the source behavior even when taking into account absorption by ambient soft photon fields. It will be shown that the presented results have important consequences for the explanation of FSRQ spectra and lightcurves, since the emission region cannot be located deep inside the broad line region as is typically assumed. Additionally, acceleration and cooling processes must be strongly time-dependent in order to account for the observed variability patterns.
The flat spectrum radio quasar (FSRQ) PKS 1510-089 (z=0.361) is known for its complex multiwavelength behavior. It has been monitored regularly at very high energy (VHE, $E>100,$GeV) gamma-rays with H.E.S.S. since its discovery in 2009 in order to st udy the unknown behavior of FSRQs in quiescence at VHE, as well as the flux evolution around flaring events. Given the expected strong cooling of electrons and the absorption of VHE emission within the broad-line region, a detection of PKS 1510-089 at VHE in a quiescent state would be an important result, implying an acceleration and emission region on scales beyond the broad-line region. The H.E.S.S. monitoring has been intensified since 2015 and is complemented by monitoring at high energy ($E>100,$MeV) gamma-rays with Fermi, at X-rays with Swift-XRT, and at optical frequencies with ATOM. The dense lightcurves allow for the first time detailed comparison studies between these energy bands. The source has been active in several frequency bands for a large fraction of the observation time frames. Yet, we do not find obvious correlations between the VHE and the other bands over the observed time frame indicating a non-trivial interplay of the acceleration, cooling and radiative processes. It also implies a rich variety in flaring behavior, which makes this source difficult to interpret within a unique theoretical framework.
The flat spectrum radio quasar PKS 1510-089 is a monitored target in many wavelength bands due to its high variability. It was detected as a very-high-energy (VHE) $gamma$-ray emitter with H.E.S.S. in 2009, and has since been a regular target of VHE observations by the imaging Cherenkov observatories H.E.S.S. and MAGIC. In this paper, we summarize the current state of results focusing on the monitoring effort with H.E.S.S. and the discovery of a particularly strong VHE flare in 2016 with H.E.S.S. and MAGIC. While the source has now been established as a weak, but regular emitter at VHE, no correlation with other energy bands has been established. This is underlined by the 2016 VHE flare, where the detected optical and high-energy $gamma$-ray counterparts evolve differently than the VHE flux.
We report on multi-band photometric and polarimetric observations of the blazars AO 0235+164 and PKS 1510-089. These two blazars were active in 2008 and 2009, respectively. In these active states, prominent short flares were observed in both objects, having amplitudes of >1 mag within 10 d. The $V-J$ color became bluer when the objects were brighter in these flares. On the other hand, the color of PKS 1510-089 exhibited a trend that it became redder when it was brighter, except for its prominent flare. This redder-when-brighter trend can be explained by the strong contribution of thermal emission from an accretion disk. The polarization degree increased at the flares, and reached >25 % at the maxima. We compare these flares in AO 0235+164 and PKS 1510-089 with other short flares which were detected by our monitoring of 41 blazars. Those two flares had one of the largest variation amplitudes in both flux and polarization degree. Furthermore, we found a significant positive correlation between the amplitudes of the flux and polarization degree in the short flares. It indicates that the short flares originate from the region where the magnetic field is aligned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا