ﻻ يوجد ملخص باللغة العربية
Recently Cole and Gkatzelis gave the first constant factor approximation algorithm for the problem of allocating indivisible items to agents, under additive valuations, so as to maximize the Nash Social Welfare. We give constant factor algorithms for a substantial generalization of their problem -- to the case of separable, piecewise-linear concave utility functions. We give two such algorithms, the first using market equilibria and the second using the theory of stable polynomials. In AGT, there is a paucity of methods for the design of mechanisms for the allocation of indivisible goods and the result of Cole and Gkatzelis seemed to be taking a major step towards filling this gap. Our result can be seen as another step in this direction.
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn
We study the equilibrium computation problem in the Fisher market model with constrained piecewise linear concave (PLC) utilities. This general class captures many well-studied special cases, including markets with PLC utilities, markets with satiati
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a
Without monetary payments, the Gibbard-Satterthwaite theorem proves that under mild requirements all truthful social choice mechanisms must be dictatorships. When payments are allowed, the Vickrey-Clarke-Groves (VCG) mechanism implements the value-ma