ﻻ يوجد ملخص باللغة العربية
Let R be a finite principal left ideal ring. Via a total ordering of the ring elements and an ordered basis a lexicographic ordering of the module R^n is produced. This is used to set up a greedy algorithm that selects vectors for which all linear combination with the previously selected vectors satisfy a pre-specified selection property and updates the to-be-constructed code to the linear hull of the vectors selected so far. The output is called a lexicode. This process was discussed earlier in the literature for fields and chain rings. In this paper we investigate the properties of such lexicodes over finite principal left ideal rings and show that the total ordering of the ring elements has to respect containment of ideals in order for the algorithm to produce meaningful results. Only then it is guaranteed that the algorithm is exhaustive and thus produces codes that are maximal with respect to inclusion. It is further illustrated that the output of the algorithm heavily depends on the total ordering and chosen basis.
A structure theorem of the group codes which are relative projective for the subgroup $lbrace 1 rbrace$ of $G$ is given. With this, we show that all such relative projective group codes in a fixed group algebra $RG$ are in bijection to the chains of
Galois images of polycyclic codes over a finite chain ring $S$ and their annihilator dual are investigated. The case when a polycyclic codes is Galois-disjoint over the ring $S,$ is characterized and, the trace codes and restrictions of free polycycl
Given $texttt{S}|texttt{R}$ a finite Galois extension of finite chain rings and $mathcal{B}$ an $texttt{S}$-linear code we define two Galois operators, the closure operator and the interior operator. We proof that a linear code is Galois invariant if
Linear complementary dual (LCD) codes and linear complementary pair (LCP) of codes over finite fields have been intensively studied recently due to their applications in cryptography, in the context of side-channel and fault injection attacks. The se
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.