ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

81   0   0.0 ( 0 )
 نشر من قبل Flavio Calvo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims. Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods. Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results. The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions. Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them.



قيم البحث

اقرأ أيضاً

358 - Q. Hao , C. Fang , M. D. Ding 2020
By use of the high-resolution spectral data and the broadband imaging obtained with the Goode Solar Telescope at the Big Bear Solar Observatory on 2013 June 6, the spectra of three typical photospheric bright points (PBPs) have been analyzed. Based o n the H$alpha$ and Ca II 8542 AA line profiles, as well as the TiO continuum emission, for the first time, the non-LTE semi-empirical atmospheric models for the PBPs are computed. The attractive characteristic is the temperature enhancement in the lower photosphere. The temperature enhancement is about 200 -- 500 K at the same column mass density as in the atmospheric model of the quiet-Sun. The total excess radiative energy of a typical PBP is estimated to be 1$times$10$^{27}$ - 2$times$10$^{27}$ ergs, which can be regarded as the lower limit energy of the PBPs. The radiation flux in the visible continuum for the PBPs is about 5.5$times$10$^{10}$ ergs cm$^{-2}$ s$^{-1}$. Our result also indicates that the temperature in the atmosphere above PBPs is close to that of a plage. It gives a clear evidence that PBPs may contribute significantly to the heating of the plage atmosphere. Using our semi-empirical atmospheric models, we estimate self-consistently the average magnetic flux density $B$ in the PBPs. It is shown that the maximum value is about one kilo-Gauss, and it decreases towards both higher and lower layers, reminding us of the structure of a flux tube between photospheric granules.
Bright points (BPs) in the solar photosphere are radiative signatures of magnetic elements described by slender flux tubes located in the darker intergranular lanes. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hen ce may influence the Earths climate. Here we combine high-resolution UV and spectro-polarimetric observations of BPs by the SUNRISE observatory with 3D radiation MHD simulations. Full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. It is demonstrated that the MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. Furthermore, the properties of observed BPs are compared with synthetic ones. These match also relatively well, except that the observations display a tail of large and strongly polarized BPs not found in the simulations. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe I line at 5250.2 AA{}. The Stokes $V$ asymmetries of the BPs increase with the distance to their center in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of the synthetic BPs. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, their mean BP field strength is 1750 G, supporting the flux-tube paradigm to describe BPs.
Magnetic bright points are small-scale magnetic elements ubiquitous across the solar disk, with the prevailing theory suggesting that they form due to the process of convective collapse. Employing a unique full Stokes spectropolarimetric data set of a quiet Sun region close to disk centre obtained with the Swedish Solar Telescope, we look at general trends in the properties of magnetic bright points. In total we track 300 MBPs in the data set and we employ NICOLE
Context. Magnetic bright points (MBPs) are dynamic, small-scale magnetic elements often found with field strengths of the order of a kilogauss within intergranular lanes in the photosphere. Aims. Here we study the evolution of various physical proper ties inferred from inverting high-resolution full Stokes spectropolarimetry data obtained from ground-based observations of the quiet Sun at disc centre. Methods. Using automated feature-tracking algorithms, we studied 300 MBPs and analysed their temporal evolution as they evolved to kilogauss field strengths. These properties were inferred using both the NICOLE and SIR Stokes inversion codes. We employ similar techniques to study radiative magnetohydrodynamical simulations for comparison with our observations. Results. Evidence was found for fast (~30 - 100s) amplification of magnetic field strength (by a factor of 2 on average) in MBPs during their evolution in our observations. Similar evidence for the amplification of fields is seen in our simulated data. Conclusions. Several reasons for the amplifications were established, namely, strong downflows preceding the amplification (convective collapse), compression due to granular expansion and mergers with neighbouring MBPs. Similar amplification of the fields and interpretations were found in our simulations, as well as amplification due to vorticity. Such a fast amplification will have implications for a wide array of topics related to small-scale fields in the lower atmosphere, particularly with regard to propagating wave phenomena in MBPs.
The magnetic network extending from the photosphere (solar radius $simeq R_odot$) to lower corona ($R_odot + 10$ Mm) plays an important role in the heating mechanisms of the solar atmosphere. Here we further develop the models with realistic open mag netic flux tubes of the authors in order to model more complicated configurations. Closed magnetic loops, and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity it is possible to create a steady background magnetic field configuration modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to SOHO/MDI and SDO/HMI and other magnetograms from the solar surface, upon which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to Helioseismic and Magnetic Imager data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا